Proof of Theorem evls1vsca
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (𝜑 → 𝜑) |
2 | | evls1vsca.m |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑅) |
3 | | evls1vsca.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ 𝐵) |
4 | | eqid 2728 |
. . . . . . 7
⊢
(Poly1‘𝑆) = (Poly1‘𝑆) |
5 | | ressply1evl.u |
. . . . . . 7
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
6 | | ressply1evl.w |
. . . . . . 7
⊢ 𝑊 = (Poly1‘𝑈) |
7 | | ressply1evl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑊) |
8 | | evls1vsca.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
9 | | eqid 2728 |
. . . . . . 7
⊢
((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) |
10 | 4, 5, 6, 7, 8, 9 | ressply1vsca 22144 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑅 ∧ 𝑁 ∈ 𝐵)) → (𝐴( ·𝑠
‘𝑊)𝑁) = (𝐴( ·𝑠
‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
11 | 1, 2, 3, 10 | syl12anc 836 |
. . . . 5
⊢ (𝜑 → (𝐴( ·𝑠
‘𝑊)𝑁) = (𝐴( ·𝑠
‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
12 | | evls1vsca.1 |
. . . . . 6
⊢ × = (
·𝑠 ‘𝑊) |
13 | 12 | oveqi 7428 |
. . . . 5
⊢ (𝐴 × 𝑁) = (𝐴( ·𝑠
‘𝑊)𝑁) |
14 | 7 | fvexi 6906 |
. . . . . . 7
⊢ 𝐵 ∈ V |
15 | | eqid 2728 |
. . . . . . . 8
⊢ (
·𝑠 ‘(Poly1‘𝑆)) = (
·𝑠 ‘(Poly1‘𝑆)) |
16 | 9, 15 | ressvsca 17319 |
. . . . . . 7
⊢ (𝐵 ∈ V → (
·𝑠 ‘(Poly1‘𝑆)) = (
·𝑠 ‘((Poly1‘𝑆) ↾s 𝐵))) |
17 | 14, 16 | ax-mp 5 |
. . . . . 6
⊢ (
·𝑠 ‘(Poly1‘𝑆)) = (
·𝑠 ‘((Poly1‘𝑆) ↾s 𝐵)) |
18 | 17 | oveqi 7428 |
. . . . 5
⊢ (𝐴(
·𝑠 ‘(Poly1‘𝑆))𝑁) = (𝐴( ·𝑠
‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
19 | 11, 13, 18 | 3eqtr4g 2793 |
. . . 4
⊢ (𝜑 → (𝐴 × 𝑁) = (𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁)) |
20 | 19 | fveq2d 6896 |
. . 3
⊢ (𝜑 →
((eval1‘𝑆)‘(𝐴 × 𝑁)) = ((eval1‘𝑆)‘(𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁))) |
21 | 20 | fveq1d 6894 |
. 2
⊢ (𝜑 →
(((eval1‘𝑆)‘(𝐴 × 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁))‘𝐶)) |
22 | | ressply1evl.q |
. . . . . 6
⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
23 | | ressply1evl.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
24 | | eqid 2728 |
. . . . . 6
⊢
(eval1‘𝑆) = (eval1‘𝑆) |
25 | | evls1vsca.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
26 | 22, 23, 6, 5, 7, 24,
25, 8 | ressply1evl 33242 |
. . . . 5
⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
27 | 26 | fveq1d 6894 |
. . . 4
⊢ (𝜑 → (𝑄‘(𝐴 × 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝐴 × 𝑁))) |
28 | 5 | subrgcrng 20508 |
. . . . . . . 8
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
29 | 25, 8, 28 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ CRing) |
30 | | crngring 20179 |
. . . . . . 7
⊢ (𝑈 ∈ CRing → 𝑈 ∈ Ring) |
31 | 6 | ply1lmod 22164 |
. . . . . . 7
⊢ (𝑈 ∈ Ring → 𝑊 ∈ LMod) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LMod) |
33 | 23 | subrgss 20505 |
. . . . . . . . . 10
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
34 | 8, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
35 | 5, 23 | ressbas2 17212 |
. . . . . . . . 9
⊢ (𝑅 ⊆ 𝐾 → 𝑅 = (Base‘𝑈)) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
37 | 5 | ovexi 7449 |
. . . . . . . . . 10
⊢ 𝑈 ∈ V |
38 | 6 | ply1sca 22165 |
. . . . . . . . . 10
⊢ (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊)) |
39 | 37, 38 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (Scalar‘𝑊)) |
40 | 39 | fveq2d 6896 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑈) =
(Base‘(Scalar‘𝑊))) |
41 | 36, 40 | eqtrd 2768 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘𝑊))) |
42 | 2, 41 | eleqtrd 2831 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝑊))) |
43 | | eqid 2728 |
. . . . . . 7
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
44 | | eqid 2728 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
45 | 7, 43, 12, 44 | lmodvscl 20755 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑁 ∈ 𝐵) → (𝐴 × 𝑁) ∈ 𝐵) |
46 | 32, 42, 3, 45 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝐴 × 𝑁) ∈ 𝐵) |
47 | 46 | fvresd 6912 |
. . . 4
⊢ (𝜑 →
(((eval1‘𝑆) ↾ 𝐵)‘(𝐴 × 𝑁)) = ((eval1‘𝑆)‘(𝐴 × 𝑁))) |
48 | 27, 47 | eqtr2d 2769 |
. . 3
⊢ (𝜑 →
((eval1‘𝑆)‘(𝐴 × 𝑁)) = (𝑄‘(𝐴 × 𝑁))) |
49 | 48 | fveq1d 6894 |
. 2
⊢ (𝜑 →
(((eval1‘𝑆)‘(𝐴 × 𝑁))‘𝐶) = ((𝑄‘(𝐴 × 𝑁))‘𝐶)) |
50 | | eqid 2728 |
. . . 4
⊢
(Base‘(Poly1‘𝑆)) =
(Base‘(Poly1‘𝑆)) |
51 | | evls1vsca.y |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐾) |
52 | | eqid 2728 |
. . . . . . . 8
⊢
(PwSer1‘𝑈) = (PwSer1‘𝑈) |
53 | | eqid 2728 |
. . . . . . . 8
⊢
(Base‘(PwSer1‘𝑈)) =
(Base‘(PwSer1‘𝑈)) |
54 | 4, 5, 6, 7, 8, 52,
53, 50 | ressply1bas2 22140 |
. . . . . . 7
⊢ (𝜑 → 𝐵 =
((Base‘(PwSer1‘𝑈)) ∩
(Base‘(Poly1‘𝑆)))) |
55 | | inss2 4226 |
. . . . . . 7
⊢
((Base‘(PwSer1‘𝑈)) ∩
(Base‘(Poly1‘𝑆))) ⊆
(Base‘(Poly1‘𝑆)) |
56 | 54, 55 | eqsstrdi 4033 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆
(Base‘(Poly1‘𝑆))) |
57 | 56, 3 | sseldd 3980 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
(Base‘(Poly1‘𝑆))) |
58 | 26 | fveq1d 6894 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
59 | 3 | fvresd 6912 |
. . . . . . 7
⊢ (𝜑 →
(((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
60 | 58, 59 | eqtr2d 2769 |
. . . . . 6
⊢ (𝜑 →
((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
61 | 60 | fveq1d 6894 |
. . . . 5
⊢ (𝜑 →
(((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
62 | 57, 61 | jca 511 |
. . . 4
⊢ (𝜑 → (𝑁 ∈
(Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
63 | 34, 2 | sseldd 3980 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
64 | | evls1vsca.2 |
. . . 4
⊢ · =
(.r‘𝑆) |
65 | 24, 4, 23, 50, 25, 51, 62, 63, 15, 64 | evl1vsd 22257 |
. . 3
⊢ (𝜑 → ((𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁) ∈
(Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁))‘𝐶) = (𝐴 · ((𝑄‘𝑁)‘𝐶)))) |
66 | 65 | simprd 495 |
. 2
⊢ (𝜑 →
(((eval1‘𝑆)‘(𝐴( ·𝑠
‘(Poly1‘𝑆))𝑁))‘𝐶) = (𝐴 · ((𝑄‘𝑁)‘𝐶))) |
67 | 21, 49, 66 | 3eqtr3d 2776 |
1
⊢ (𝜑 → ((𝑄‘(𝐴 × 𝑁))‘𝐶) = (𝐴 · ((𝑄‘𝑁)‘𝐶))) |