Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
β’ (π β π) |
2 | | evls1vsca.m |
. . . . . 6
β’ (π β π΄ β π
) |
3 | | evls1vsca.n |
. . . . . 6
β’ (π β π β π΅) |
4 | | eqid 2731 |
. . . . . . 7
β’
(Poly1βπ) = (Poly1βπ) |
5 | | ressply1evl.u |
. . . . . . 7
β’ π = (π βΎs π
) |
6 | | ressply1evl.w |
. . . . . . 7
β’ π = (Poly1βπ) |
7 | | ressply1evl.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
8 | | evls1vsca.r |
. . . . . . 7
β’ (π β π
β (SubRingβπ)) |
9 | | eqid 2731 |
. . . . . . 7
β’
((Poly1βπ) βΎs π΅) = ((Poly1βπ) βΎs π΅) |
10 | 4, 5, 6, 7, 8, 9 | ressply1vsca 21975 |
. . . . . 6
β’ ((π β§ (π΄ β π
β§ π β π΅)) β (π΄( Β·π
βπ)π) = (π΄( Β·π
β((Poly1βπ) βΎs π΅))π)) |
11 | 1, 2, 3, 10 | syl12anc 834 |
. . . . 5
β’ (π β (π΄( Β·π
βπ)π) = (π΄( Β·π
β((Poly1βπ) βΎs π΅))π)) |
12 | | evls1vsca.1 |
. . . . . 6
β’ Γ = (
Β·π βπ) |
13 | 12 | oveqi 7425 |
. . . . 5
β’ (π΄ Γ π) = (π΄( Β·π
βπ)π) |
14 | 7 | fvexi 6905 |
. . . . . . 7
β’ π΅ β V |
15 | | eqid 2731 |
. . . . . . . 8
β’ (
Β·π β(Poly1βπ)) = (
Β·π β(Poly1βπ)) |
16 | 9, 15 | ressvsca 17294 |
. . . . . . 7
β’ (π΅ β V β (
Β·π β(Poly1βπ)) = (
Β·π β((Poly1βπ) βΎs π΅))) |
17 | 14, 16 | ax-mp 5 |
. . . . . 6
β’ (
Β·π β(Poly1βπ)) = (
Β·π β((Poly1βπ) βΎs π΅)) |
18 | 17 | oveqi 7425 |
. . . . 5
β’ (π΄(
Β·π β(Poly1βπ))π) = (π΄( Β·π
β((Poly1βπ) βΎs π΅))π) |
19 | 11, 13, 18 | 3eqtr4g 2796 |
. . . 4
β’ (π β (π΄ Γ π) = (π΄( Β·π
β(Poly1βπ))π)) |
20 | 19 | fveq2d 6895 |
. . 3
β’ (π β
((eval1βπ)β(π΄ Γ π)) = ((eval1βπ)β(π΄( Β·π
β(Poly1βπ))π))) |
21 | 20 | fveq1d 6893 |
. 2
β’ (π β
(((eval1βπ)β(π΄ Γ π))βπΆ) = (((eval1βπ)β(π΄( Β·π
β(Poly1βπ))π))βπΆ)) |
22 | | ressply1evl.q |
. . . . . 6
β’ π = (π evalSub1 π
) |
23 | | ressply1evl.k |
. . . . . 6
β’ πΎ = (Baseβπ) |
24 | | eqid 2731 |
. . . . . 6
β’
(eval1βπ) = (eval1βπ) |
25 | | evls1vsca.s |
. . . . . 6
β’ (π β π β CRing) |
26 | 22, 23, 6, 5, 7, 24,
25, 8 | ressply1evl 32922 |
. . . . 5
β’ (π β π = ((eval1βπ) βΎ π΅)) |
27 | 26 | fveq1d 6893 |
. . . 4
β’ (π β (πβ(π΄ Γ π)) = (((eval1βπ) βΎ π΅)β(π΄ Γ π))) |
28 | 5 | subrgcrng 20466 |
. . . . . . . 8
β’ ((π β CRing β§ π
β (SubRingβπ)) β π β CRing) |
29 | 25, 8, 28 | syl2anc 583 |
. . . . . . 7
β’ (π β π β CRing) |
30 | | crngring 20140 |
. . . . . . 7
β’ (π β CRing β π β Ring) |
31 | 6 | ply1lmod 21995 |
. . . . . . 7
β’ (π β Ring β π β LMod) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . 6
β’ (π β π β LMod) |
33 | 23 | subrgss 20463 |
. . . . . . . . . 10
β’ (π
β (SubRingβπ) β π
β πΎ) |
34 | 8, 33 | syl 17 |
. . . . . . . . 9
β’ (π β π
β πΎ) |
35 | 5, 23 | ressbas2 17187 |
. . . . . . . . 9
β’ (π
β πΎ β π
= (Baseβπ)) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
β’ (π β π
= (Baseβπ)) |
37 | 5 | ovexi 7446 |
. . . . . . . . . 10
β’ π β V |
38 | 6 | ply1sca 21996 |
. . . . . . . . . 10
β’ (π β V β π = (Scalarβπ)) |
39 | 37, 38 | mp1i 13 |
. . . . . . . . 9
β’ (π β π = (Scalarβπ)) |
40 | 39 | fveq2d 6895 |
. . . . . . . 8
β’ (π β (Baseβπ) =
(Baseβ(Scalarβπ))) |
41 | 36, 40 | eqtrd 2771 |
. . . . . . 7
β’ (π β π
= (Baseβ(Scalarβπ))) |
42 | 2, 41 | eleqtrd 2834 |
. . . . . 6
β’ (π β π΄ β (Baseβ(Scalarβπ))) |
43 | | eqid 2731 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
44 | | eqid 2731 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
45 | 7, 43, 12, 44 | lmodvscl 20633 |
. . . . . 6
β’ ((π β LMod β§ π΄ β
(Baseβ(Scalarβπ)) β§ π β π΅) β (π΄ Γ π) β π΅) |
46 | 32, 42, 3, 45 | syl3anc 1370 |
. . . . 5
β’ (π β (π΄ Γ π) β π΅) |
47 | 46 | fvresd 6911 |
. . . 4
β’ (π β
(((eval1βπ) βΎ π΅)β(π΄ Γ π)) = ((eval1βπ)β(π΄ Γ π))) |
48 | 27, 47 | eqtr2d 2772 |
. . 3
β’ (π β
((eval1βπ)β(π΄ Γ π)) = (πβ(π΄ Γ π))) |
49 | 48 | fveq1d 6893 |
. 2
β’ (π β
(((eval1βπ)β(π΄ Γ π))βπΆ) = ((πβ(π΄ Γ π))βπΆ)) |
50 | | eqid 2731 |
. . . 4
β’
(Baseβ(Poly1βπ)) =
(Baseβ(Poly1βπ)) |
51 | | evls1vsca.y |
. . . 4
β’ (π β πΆ β πΎ) |
52 | | eqid 2731 |
. . . . . . . 8
β’
(PwSer1βπ) = (PwSer1βπ) |
53 | | eqid 2731 |
. . . . . . . 8
β’
(Baseβ(PwSer1βπ)) =
(Baseβ(PwSer1βπ)) |
54 | 4, 5, 6, 7, 8, 52,
53, 50 | ressply1bas2 21971 |
. . . . . . 7
β’ (π β π΅ =
((Baseβ(PwSer1βπ)) β©
(Baseβ(Poly1βπ)))) |
55 | | inss2 4229 |
. . . . . . 7
β’
((Baseβ(PwSer1βπ)) β©
(Baseβ(Poly1βπ))) β
(Baseβ(Poly1βπ)) |
56 | 54, 55 | eqsstrdi 4036 |
. . . . . 6
β’ (π β π΅ β
(Baseβ(Poly1βπ))) |
57 | 56, 3 | sseldd 3983 |
. . . . 5
β’ (π β π β
(Baseβ(Poly1βπ))) |
58 | 26 | fveq1d 6893 |
. . . . . . 7
β’ (π β (πβπ) = (((eval1βπ) βΎ π΅)βπ)) |
59 | 3 | fvresd 6911 |
. . . . . . 7
β’ (π β
(((eval1βπ) βΎ π΅)βπ) = ((eval1βπ)βπ)) |
60 | 58, 59 | eqtr2d 2772 |
. . . . . 6
β’ (π β
((eval1βπ)βπ) = (πβπ)) |
61 | 60 | fveq1d 6893 |
. . . . 5
β’ (π β
(((eval1βπ)βπ)βπΆ) = ((πβπ)βπΆ)) |
62 | 57, 61 | jca 511 |
. . . 4
β’ (π β (π β
(Baseβ(Poly1βπ)) β§ (((eval1βπ)βπ)βπΆ) = ((πβπ)βπΆ))) |
63 | 34, 2 | sseldd 3983 |
. . . 4
β’ (π β π΄ β πΎ) |
64 | | evls1vsca.2 |
. . . 4
β’ Β· =
(.rβπ) |
65 | 24, 4, 23, 50, 25, 51, 62, 63, 15, 64 | evl1vsd 22084 |
. . 3
β’ (π β ((π΄( Β·π
β(Poly1βπ))π) β
(Baseβ(Poly1βπ)) β§ (((eval1βπ)β(π΄( Β·π
β(Poly1βπ))π))βπΆ) = (π΄ Β· ((πβπ)βπΆ)))) |
66 | 65 | simprd 495 |
. 2
β’ (π β
(((eval1βπ)β(π΄( Β·π
β(Poly1βπ))π))βπΆ) = (π΄ Β· ((πβπ)βπΆ))) |
67 | 21, 49, 66 | 3eqtr3d 2779 |
1
β’ (π β ((πβ(π΄ Γ π))βπΆ) = (π΄ Β· ((πβπ)βπΆ))) |