MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1vsca Structured version   Visualization version   GIF version

Theorem evls1vsca 22377
Description: Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1vsca.1 × = ( ·𝑠𝑊)
evls1vsca.2 · = (.r𝑆)
evls1vsca.s (𝜑𝑆 ∈ CRing)
evls1vsca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1vsca.m (𝜑𝐴𝑅)
evls1vsca.n (𝜑𝑁𝐵)
evls1vsca.y (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1vsca (𝜑 → ((𝑄‘(𝐴 × 𝑁))‘𝐶) = (𝐴 · ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1vsca
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1vsca.m . . . . . 6 (𝜑𝐴𝑅)
3 evls1vsca.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2737 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1vsca.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2737 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1vsca 22233 . . . . . 6 ((𝜑 ∧ (𝐴𝑅𝑁𝐵)) → (𝐴( ·𝑠𝑊)𝑁) = (𝐴( ·𝑠 ‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 837 . . . . 5 (𝜑 → (𝐴( ·𝑠𝑊)𝑁) = (𝐴( ·𝑠 ‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1vsca.1 . . . . . 6 × = ( ·𝑠𝑊)
1312oveqi 7444 . . . . 5 (𝐴 × 𝑁) = (𝐴( ·𝑠𝑊)𝑁)
147fvexi 6920 . . . . . . 7 𝐵 ∈ V
15 eqid 2737 . . . . . . . 8 ( ·𝑠 ‘(Poly1𝑆)) = ( ·𝑠 ‘(Poly1𝑆))
169, 15ressvsca 17388 . . . . . . 7 (𝐵 ∈ V → ( ·𝑠 ‘(Poly1𝑆)) = ( ·𝑠 ‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 ( ·𝑠 ‘(Poly1𝑆)) = ( ·𝑠 ‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7444 . . . . 5 (𝐴( ·𝑠 ‘(Poly1𝑆))𝑁) = (𝐴( ·𝑠 ‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2802 . . . 4 (𝜑 → (𝐴 × 𝑁) = (𝐴( ·𝑠 ‘(Poly1𝑆))𝑁))
2019fveq2d 6910 . . 3 (𝜑 → ((eval1𝑆)‘(𝐴 × 𝑁)) = ((eval1𝑆)‘(𝐴( ·𝑠 ‘(Poly1𝑆))𝑁)))
2120fveq1d 6908 . 2 (𝜑 → (((eval1𝑆)‘(𝐴 × 𝑁))‘𝐶) = (((eval1𝑆)‘(𝐴( ·𝑠 ‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2737 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1vsca.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22374 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6908 . . . 4 (𝜑 → (𝑄‘(𝐴 × 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝐴 × 𝑁)))
285subrgcrng 20575 . . . . . . . 8 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
2925, 8, 28syl2anc 584 . . . . . . 7 (𝜑𝑈 ∈ CRing)
30 crngring 20242 . . . . . . 7 (𝑈 ∈ CRing → 𝑈 ∈ Ring)
316ply1lmod 22253 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
3229, 30, 313syl 18 . . . . . 6 (𝜑𝑊 ∈ LMod)
3323subrgss 20572 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
348, 33syl 17 . . . . . . . . 9 (𝜑𝑅𝐾)
355, 23ressbas2 17283 . . . . . . . . 9 (𝑅𝐾𝑅 = (Base‘𝑈))
3634, 35syl 17 . . . . . . . 8 (𝜑𝑅 = (Base‘𝑈))
375ovexi 7465 . . . . . . . . . 10 𝑈 ∈ V
386ply1sca 22254 . . . . . . . . . 10 (𝑈 ∈ V → 𝑈 = (Scalar‘𝑊))
3937, 38mp1i 13 . . . . . . . . 9 (𝜑𝑈 = (Scalar‘𝑊))
4039fveq2d 6910 . . . . . . . 8 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
4136, 40eqtrd 2777 . . . . . . 7 (𝜑𝑅 = (Base‘(Scalar‘𝑊)))
422, 41eleqtrd 2843 . . . . . 6 (𝜑𝐴 ∈ (Base‘(Scalar‘𝑊)))
43 eqid 2737 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
44 eqid 2737 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
457, 43, 12, 44lmodvscl 20876 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑁𝐵) → (𝐴 × 𝑁) ∈ 𝐵)
4632, 42, 3, 45syl3anc 1373 . . . . 5 (𝜑 → (𝐴 × 𝑁) ∈ 𝐵)
4746fvresd 6926 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝐴 × 𝑁)) = ((eval1𝑆)‘(𝐴 × 𝑁)))
4827, 47eqtr2d 2778 . . 3 (𝜑 → ((eval1𝑆)‘(𝐴 × 𝑁)) = (𝑄‘(𝐴 × 𝑁)))
4948fveq1d 6908 . 2 (𝜑 → (((eval1𝑆)‘(𝐴 × 𝑁))‘𝐶) = ((𝑄‘(𝐴 × 𝑁))‘𝐶))
50 eqid 2737 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
51 evls1vsca.y . . . 4 (𝜑𝐶𝐾)
52 eqid 2737 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
53 eqid 2737 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
544, 5, 6, 7, 8, 52, 53, 50ressply1bas2 22229 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
55 inss2 4238 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
5654, 55eqsstrdi 4028 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
5756, 3sseldd 3984 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
5826fveq1d 6908 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
593fvresd 6926 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
6058, 59eqtr2d 2778 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
6160fveq1d 6908 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
6257, 61jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
6334, 2sseldd 3984 . . . 4 (𝜑𝐴𝐾)
64 evls1vsca.2 . . . 4 · = (.r𝑆)
6524, 4, 23, 50, 25, 51, 62, 63, 15, 64evl1vsd 22348 . . 3 (𝜑 → ((𝐴( ·𝑠 ‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝐴( ·𝑠 ‘(Poly1𝑆))𝑁))‘𝐶) = (𝐴 · ((𝑄𝑁)‘𝐶))))
6665simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝐴( ·𝑠 ‘(Poly1𝑆))𝑁))‘𝐶) = (𝐴 · ((𝑄𝑁)‘𝐶)))
6721, 49, 663eqtr3d 2785 1 (𝜑 → ((𝑄‘(𝐴 × 𝑁))‘𝐶) = (𝐴 · ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  cres 5687  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  Ringcrg 20230  CRingccrg 20231  SubRingcsubrg 20569  LModclmod 20858  PwSer1cps1 22176  Poly1cpl1 22178   evalSub1 ces1 22317  eval1ce1 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320
This theorem is referenced by:  evls1maplmhm  22381
  Copyright terms: Public domain W3C validator