| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqipbas | Structured version Visualization version GIF version | ||
| Description: The base set of the product of the quotient with a two-sided ideal and the two-sided ideal is the cartesian product of the base set of the quotient and the base set of the two-sided ideal. (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| Ref | Expression |
|---|---|
| rngqipbas | ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
| 2 | rngqiprngim.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 4 | rngqiprngim.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 5 | 4 | ovexi 7383 | . . . 4 ⊢ 𝑄 ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 ∈ V) |
| 7 | rng2idlring.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 8 | 1, 2, 3, 6, 7 | xpsbas 17476 | . 2 ⊢ (𝜑 → (𝐶 × (Base‘𝐽)) = (Base‘𝑃)) |
| 9 | rng2idlring.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 10 | rng2idlring.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 11 | 9, 10, 3 | 2idlbas 21170 | . . 3 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 12 | 11 | xpeq2d 5649 | . 2 ⊢ (𝜑 → (𝐶 × (Base‘𝐽)) = (𝐶 × 𝐼)) |
| 13 | 8, 12 | eqtr3d 2766 | 1 ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 × cxp 5617 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 /s cqus 17409 ×s cxps 17410 ~QG cqg 19001 Rngcrng 20037 1rcur 20066 Ringcrg 20118 2Idealc2idl 21156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-prds 17351 df-imas 17412 df-xps 17414 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-2idl 21157 |
| This theorem is referenced by: rngqiprngghm 21206 rngqiprngimf1 21207 rngqiprngim 21211 |
| Copyright terms: Public domain | W3C validator |