Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znbas | Structured version Visualization version GIF version |
Description: The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znbas.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znbas.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znbas.r | ⊢ 𝑅 = (ℤring ~QG (𝑆‘{𝑁})) |
Ref | Expression |
---|---|
znbas | ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s 𝑅) = (ℤring /s 𝑅)) | |
2 | zringbas 20789 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring)) |
4 | znbas.r | . . . . 5 ⊢ 𝑅 = (ℤring ~QG (𝑆‘{𝑁})) | |
5 | 4 | ovexi 7383 | . . . 4 ⊢ 𝑅 ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑅 ∈ V) |
7 | zringring 20786 | . . . 4 ⊢ ℤring ∈ Ring | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ℤring ∈ Ring) |
9 | 1, 3, 6, 8 | qusbas 17361 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘(ℤring /s 𝑅))) |
10 | znbas.s | . . 3 ⊢ 𝑆 = (RSpan‘ℤring) | |
11 | 4 | oveq2i 7360 | . . 3 ⊢ (ℤring /s 𝑅) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
12 | znbas.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
13 | 10, 11, 12 | znbas2 20857 | . 2 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s 𝑅)) = (Base‘𝑌)) |
14 | 9, 13 | eqtrd 2777 | 1 ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3443 {csn 4584 ‘cfv 6491 (class class class)co 7349 / cqs 8580 ℕ0cn0 12346 ℤcz 12432 Basecbs 17017 /s cqus 17321 ~QG cqg 18855 Ringcrg 19885 RSpancrsp 20546 ℤringczring 20783 ℤ/nℤczn 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-addf 11063 ax-mulf 11064 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-er 8581 df-ec 8583 df-qs 8587 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-sup 9311 df-inf 9312 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-3 12150 df-4 12151 df-5 12152 df-6 12153 df-7 12154 df-8 12155 df-9 12156 df-n0 12347 df-z 12433 df-dec 12551 df-uz 12696 df-fz 13353 df-struct 16953 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-mulr 17081 df-starv 17082 df-sca 17083 df-vsca 17084 df-ip 17085 df-tset 17086 df-ple 17087 df-ds 17089 df-unif 17090 df-0g 17257 df-imas 17324 df-qus 17325 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-grp 18684 df-minusg 18685 df-subg 18856 df-cmn 19491 df-mgp 19823 df-ur 19840 df-ring 19887 df-cring 19888 df-subrg 20134 df-cnfld 20711 df-zring 20784 df-zn 20821 |
This theorem is referenced by: znzrhfo 20868 |
Copyright terms: Public domain | W3C validator |