| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zq | Structured version Visualization version GIF version | ||
| Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| Ref | Expression |
|---|---|
| zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12541 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 2 | 1 | div1d 11957 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) = 𝐴) |
| 3 | 1nn 12204 | . . 3 ⊢ 1 ∈ ℕ | |
| 4 | znq 12918 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (𝐴 / 1) ∈ ℚ) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) ∈ ℚ) |
| 6 | 2, 5 | eqeltrrd 2830 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 1c1 11076 / cdiv 11842 ℕcn 12193 ℤcz 12536 ℚcq 12914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-z 12537 df-q 12915 |
| This theorem is referenced by: zssq 12922 qbtwnxr 13167 modirr 13914 qexpcl 14049 qexpclz 14053 zsqrtelqelz 16735 pczpre 16825 pc0 16832 pcrec 16836 pcdvdstr 16854 pcgcd1 16855 pcgcd 16856 pc2dvds 16857 pc11 16858 sylow1lem1 19535 vitalilem1 25516 elqaalem1 26234 elqaalem3 26236 qaa 26238 2irrexpq 26647 zrtelqelz 26675 2logb9irrALT 26715 2irrexpqALT 26717 lgsneg 27239 lgsdilem2 27251 lgsne0 27253 2sq2 27351 qabvle 27543 ostthlem1 27545 ostthlem2 27546 padicabv 27548 ostth2lem2 27552 ostth2 27555 ostth3 27556 znumd 32744 zdend 32745 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 qqhucn 33989 irrdifflemf 37320 irrdiff 37321 mblfinlem1 37658 aks4d1p7d1 42077 oexpreposd 42317 rmxypairf1o 42907 rmxycomplete 42913 rmxyadd 42917 rmxy1 42918 mpaaeu 43146 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |