MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zq Structured version   Visualization version   GIF version

Theorem zq 12855
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.)
Assertion
Ref Expression
zq (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zq
StepHypRef Expression
1 zcn 12476 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
21div1d 11892 . 2 (𝐴 ∈ ℤ → (𝐴 / 1) = 𝐴)
3 1nn 12139 . . 3 1 ∈ ℕ
4 znq 12853 . . 3 ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (𝐴 / 1) ∈ ℚ)
53, 4mpan2 691 . 2 (𝐴 ∈ ℤ → (𝐴 / 1) ∈ ℚ)
62, 5eqeltrrd 2829 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  (class class class)co 7349  1c1 11010   / cdiv 11777  cn 12128  cz 12471  cq 12849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-z 12472  df-q 12850
This theorem is referenced by:  zssq  12857  qbtwnxr  13102  modirr  13849  qexpcl  13984  qexpclz  13988  zsqrtelqelz  16669  pczpre  16759  pc0  16766  pcrec  16770  pcdvdstr  16788  pcgcd1  16789  pcgcd  16790  pc2dvds  16791  pc11  16792  sylow1lem1  19477  vitalilem1  25507  elqaalem1  26225  elqaalem3  26227  qaa  26229  2irrexpq  26638  zrtelqelz  26666  2logb9irrALT  26706  2irrexpqALT  26708  lgsneg  27230  lgsdilem2  27242  lgsne0  27244  2sq2  27342  qabvle  27534  ostthlem1  27536  ostthlem2  27537  padicabv  27539  ostth2lem2  27543  ostth2  27546  ostth3  27547  znumd  32758  zdend  32759  2sqr3minply  33753  cos9thpiminplylem6  33760  cos9thpiminply  33761  qqhucn  33965  irrdifflemf  37309  irrdiff  37310  mblfinlem1  37647  aks4d1p7d1  42065  oexpreposd  42305  rmxypairf1o  42894  rmxycomplete  42900  rmxyadd  42904  rmxy1  42905  mpaaeu  43133  aacllem  49796
  Copyright terms: Public domain W3C validator