![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zq | Structured version Visualization version GIF version |
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
Ref | Expression |
---|---|
zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12585 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
2 | 1 | div1d 12004 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) = 𝐴) |
3 | 1nn 12245 | . . 3 ⊢ 1 ∈ ℕ | |
4 | znq 12958 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (𝐴 / 1) ∈ ℚ) | |
5 | 3, 4 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) ∈ ℚ) |
6 | 2, 5 | eqeltrrd 2829 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 (class class class)co 7414 1c1 11131 / cdiv 11893 ℕcn 12234 ℤcz 12580 ℚcq 12954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-z 12581 df-q 12955 |
This theorem is referenced by: zssq 12962 qbtwnxr 13203 modirr 13931 qexpcl 14066 qexpclz 14070 zsqrtelqelz 16721 pczpre 16807 pc0 16814 pcrec 16818 pcdvdstr 16836 pcgcd1 16837 pcgcd 16838 pc2dvds 16839 pc11 16840 sylow1lem1 19544 vitalilem1 25524 elqaalem1 26241 elqaalem3 26243 qaa 26245 2irrexpq 26652 2logb9irrALT 26717 2irrexpqALT 26719 lgsneg 27241 lgsdilem2 27253 lgsne0 27255 2sq2 27353 qabvle 27545 ostthlem1 27547 ostthlem2 27548 padicabv 27550 ostth2lem2 27554 ostth2 27557 ostth3 27558 qqhucn 33529 irrdifflemf 36740 irrdiff 36741 mblfinlem1 37065 aks4d1p7d1 41490 oexpreposd 41803 zrtelqelz 41826 rmxypairf1o 42254 rmxycomplete 42260 rmxyadd 42264 rmxy1 42265 mpaaeu 42496 aacllem 48157 |
Copyright terms: Public domain | W3C validator |