| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zq | Structured version Visualization version GIF version | ||
| Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| Ref | Expression |
|---|---|
| zq | ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12534 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 2 | 1 | div1d 11950 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) = 𝐴) |
| 3 | 1nn 12197 | . . 3 ⊢ 1 ∈ ℕ | |
| 4 | znq 12911 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (𝐴 / 1) ∈ ℚ) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 / 1) ∈ ℚ) |
| 6 | 2, 5 | eqeltrrd 2829 | 1 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 1c1 11069 / cdiv 11835 ℕcn 12186 ℤcz 12529 ℚcq 12907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-z 12530 df-q 12908 |
| This theorem is referenced by: zssq 12915 qbtwnxr 13160 modirr 13907 qexpcl 14042 qexpclz 14046 zsqrtelqelz 16728 pczpre 16818 pc0 16825 pcrec 16829 pcdvdstr 16847 pcgcd1 16848 pcgcd 16849 pc2dvds 16850 pc11 16851 sylow1lem1 19528 vitalilem1 25509 elqaalem1 26227 elqaalem3 26229 qaa 26231 2irrexpq 26640 zrtelqelz 26668 2logb9irrALT 26708 2irrexpqALT 26710 lgsneg 27232 lgsdilem2 27244 lgsne0 27246 2sq2 27344 qabvle 27536 ostthlem1 27538 ostthlem2 27539 padicabv 27541 ostth2lem2 27545 ostth2 27548 ostth3 27549 znumd 32737 zdend 32738 2sqr3minply 33770 cos9thpiminplylem6 33777 cos9thpiminply 33778 qqhucn 33982 irrdifflemf 37313 irrdiff 37314 mblfinlem1 37651 aks4d1p7d1 42070 oexpreposd 42310 rmxypairf1o 42900 rmxycomplete 42906 rmxyadd 42910 rmxy1 42911 mpaaeu 43139 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |