MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zq Structured version   Visualization version   GIF version

Theorem zq 12938
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.)
Assertion
Ref Expression
zq (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zq
StepHypRef Expression
1 zcn 12563 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
21div1d 11982 . 2 (𝐴 ∈ ℤ → (𝐴 / 1) = 𝐴)
3 1nn 12223 . . 3 1 ∈ ℕ
4 znq 12936 . . 3 ((𝐴 ∈ ℤ ∧ 1 ∈ ℕ) → (𝐴 / 1) ∈ ℚ)
53, 4mpan2 690 . 2 (𝐴 ∈ ℤ → (𝐴 / 1) ∈ ℚ)
62, 5eqeltrrd 2835 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  (class class class)co 7409  1c1 11111   / cdiv 11871  cn 12212  cz 12558  cq 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-z 12559  df-q 12933
This theorem is referenced by:  zssq  12940  qbtwnxr  13179  modirr  13907  qexpcl  14043  qexpclz  14047  zsqrtelqelz  16694  pczpre  16780  pc0  16787  pcrec  16791  pcdvdstr  16809  pcgcd1  16810  pcgcd  16811  pc2dvds  16812  pc11  16813  sylow1lem1  19466  vitalilem1  25125  elqaalem1  25832  elqaalem3  25834  qaa  25836  2irrexpq  26239  2logb9irrALT  26303  2irrexpqALT  26305  lgsneg  26824  lgsdilem2  26836  lgsne0  26838  2sq2  26936  qabvle  27128  ostthlem1  27130  ostthlem2  27131  padicabv  27133  ostth2lem2  27137  ostth2  27140  ostth3  27141  qqhucn  32972  irrdifflemf  36206  irrdiff  36207  mblfinlem1  36525  aks4d1p7d1  40947  oexpreposd  41212  zrtelqelz  41235  rmxypairf1o  41650  rmxycomplete  41656  rmxyadd  41660  rmxy1  41661  mpaaeu  41892  aacllem  47848
  Copyright terms: Public domain W3C validator