![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxid | Structured version Visualization version GIF version |
Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by AV, 2-May-2020.) |
Ref | Expression |
---|---|
pfxid | ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 14515 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0) | |
2 | nn0fz0 13631 | . . . . 5 ⊢ ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
4 | pfxf 14662 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (𝑆 prefix (♯‘𝑆)):(0..^(♯‘𝑆))⟶𝐴) | |
5 | 3, 4 | mpdan 686 | . . 3 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)):(0..^(♯‘𝑆))⟶𝐴) |
6 | 5 | ffnd 6723 | . 2 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) Fn (0..^(♯‘𝑆))) |
7 | wrdfn 14510 | . 2 ⊢ (𝑆 ∈ Word 𝐴 → 𝑆 Fn (0..^(♯‘𝑆))) | |
8 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
9 | 3 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
10 | simpr 484 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^(♯‘𝑆))) | |
11 | pfxfv 14664 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 prefix (♯‘𝑆))‘𝑥) = (𝑆‘𝑥)) | |
12 | 8, 9, 10, 11 | syl3anc 1369 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 prefix (♯‘𝑆))‘𝑥) = (𝑆‘𝑥)) |
13 | 6, 7, 12 | eqfnfvd 7043 | 1 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 0cc0 11138 ℕ0cn0 12502 ...cfz 13516 ..^cfzo 13659 ♯chash 14321 Word cword 14496 prefix cpfx 14652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-substr 14623 df-pfx 14653 |
This theorem is referenced by: pfxcctswrd 14692 wrdeqs1cat 14702 pfxccatpfx2 14719 swrdccat3b 14722 pfxccatid 14723 splid 14735 splval2 14739 cshw0 14776 efgredleme 19697 efgredlemc 19699 efgcpbllemb 19709 frgpuplem 19726 wrdsplex 32661 |
Copyright terms: Public domain | W3C validator |