MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxid Structured version   Visualization version   GIF version

Theorem pfxid 14722
Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by AV, 2-May-2020.)
Assertion
Ref Expression
pfxid (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆)

Proof of Theorem pfxid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lencl 14571 . . . . 5 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ ℕ0)
2 nn0fz0 13665 . . . . 5 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
31, 2sylib 218 . . . 4 (𝑆 ∈ Word 𝐴 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
4 pfxf 14718 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → (𝑆 prefix (♯‘𝑆)):(0..^(♯‘𝑆))⟶𝐴)
53, 4mpdan 687 . . 3 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)):(0..^(♯‘𝑆))⟶𝐴)
65ffnd 6737 . 2 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) Fn (0..^(♯‘𝑆)))
7 wrdfn 14566 . 2 (𝑆 ∈ Word 𝐴𝑆 Fn (0..^(♯‘𝑆)))
8 simpl 482 . . 3 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑆))) → 𝑆 ∈ Word 𝐴)
93adantr 480 . . 3 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑆))) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
10 simpr 484 . . 3 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^(♯‘𝑆)))
11 pfxfv 14720 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 prefix (♯‘𝑆))‘𝑥) = (𝑆𝑥))
128, 9, 10, 11syl3anc 1373 . 2 ((𝑆 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 prefix (♯‘𝑆))‘𝑥) = (𝑆𝑥))
136, 7, 12eqfnfvd 7054 1 (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  0cn0 12526  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   prefix cpfx 14708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-substr 14679  df-pfx 14709
This theorem is referenced by:  pfxcctswrd  14748  wrdeqs1cat  14758  pfxccatpfx2  14775  swrdccat3b  14778  pfxccatid  14779  splid  14791  splval2  14795  cshw0  14832  efgredleme  19761  efgredlemc  19763  efgcpbllemb  19773  frgpuplem  19790  wrdsplex  32920
  Copyright terms: Public domain W3C validator