![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj1ghm2 | Structured version Visualization version GIF version |
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
pj1eu.a | โข + = (+gโ๐บ) |
pj1eu.s | โข โ = (LSSumโ๐บ) |
pj1eu.o | โข 0 = (0gโ๐บ) |
pj1eu.z | โข ๐ = (Cntzโ๐บ) |
pj1eu.2 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.3 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.4 | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
pj1eu.5 | โข (๐ โ ๐ โ (๐โ๐)) |
pj1f.p | โข ๐ = (proj1โ๐บ) |
Ref | Expression |
---|---|
pj1ghm2 | โข (๐ โ (๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom (๐บ โพs ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 โข + = (+gโ๐บ) | |
2 | pj1eu.s | . . 3 โข โ = (LSSumโ๐บ) | |
3 | pj1eu.o | . . 3 โข 0 = (0gโ๐บ) | |
4 | pj1eu.z | . . 3 โข ๐ = (Cntzโ๐บ) | |
5 | pj1eu.2 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
6 | pj1eu.3 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
7 | pj1eu.4 | . . 3 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
8 | pj1eu.5 | . . 3 โข (๐ โ ๐ โ (๐โ๐)) | |
9 | pj1f.p | . . 3 โข ๐ = (proj1โ๐บ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pj1ghm 19612 | . 2 โข (๐ โ (๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom ๐บ)) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pj1f 19606 | . . . 4 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
12 | 11 | frnd 6724 | . . 3 โข (๐ โ ran (๐๐๐) โ ๐) |
13 | eqid 2730 | . . . 4 โข (๐บ โพs ๐) = (๐บ โพs ๐) | |
14 | 13 | resghm2b 19148 | . . 3 โข ((๐ โ (SubGrpโ๐บ) โง ran (๐๐๐) โ ๐) โ ((๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom ๐บ) โ (๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom (๐บ โพs ๐)))) |
15 | 5, 12, 14 | syl2anc 582 | . 2 โข (๐ โ ((๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom ๐บ) โ (๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom (๐บ โพs ๐)))) |
16 | 10, 15 | mpbid 231 | 1 โข (๐ โ (๐๐๐) โ ((๐บ โพs (๐ โ ๐)) GrpHom (๐บ โพs ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1539 โ wcel 2104 โฉ cin 3946 โ wss 3947 {csn 4627 ran crn 5676 โcfv 6542 (class class class)co 7411 โพs cress 17177 +gcplusg 17201 0gc0g 17389 SubGrpcsubg 19036 GrpHom cghm 19127 Cntzccntz 19220 LSSumclsm 19543 proj1cpj1 19544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-ghm 19128 df-cntz 19222 df-lsm 19545 df-pj1 19546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |