Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm2 Structured version   Visualization version   GIF version

Theorem pj1ghm2 18825
 Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1ghm2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom (𝐺s 𝑇)))

Proof of Theorem pj1ghm2
StepHypRef Expression
1 pj1eu.a . . 3 + = (+g𝐺)
2 pj1eu.s . . 3 = (LSSum‘𝐺)
3 pj1eu.o . . 3 0 = (0g𝐺)
4 pj1eu.z . . 3 𝑍 = (Cntz‘𝐺)
5 pj1eu.2 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
6 pj1eu.3 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
7 pj1eu.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
8 pj1eu.5 . . 3 (𝜑𝑇 ⊆ (𝑍𝑈))
9 pj1f.p . . 3 𝑃 = (proj1𝐺)
101, 2, 3, 4, 5, 6, 7, 8, 9pj1ghm 18824 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))
111, 2, 3, 4, 5, 6, 7, 8, 9pj1f 18818 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
1211frnd 6498 . . 3 (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇)
13 eqid 2801 . . . 4 (𝐺s 𝑇) = (𝐺s 𝑇)
1413resghm2b 18371 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺) ↔ (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom (𝐺s 𝑇))))
155, 12, 14syl2anc 587 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺) ↔ (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom (𝐺s 𝑇))))
1610, 15mpbid 235 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom (𝐺s 𝑇)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2112   ∩ cin 3883   ⊆ wss 3884  {csn 4528  ran crn 5524  ‘cfv 6328  (class class class)co 7139   ↾s cress 16479  +gcplusg 16560  0gc0g 16708  SubGrpcsubg 18268   GrpHom cghm 18350  Cntzccntz 18440  LSSumclsm 18754  proj1cpj1 18755 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-ghm 18351  df-cntz 18442  df-lsm 18756  df-pj1 18757 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator