| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version | ||
| Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12604 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | 3anass 1094 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
| 4 | fzolb 13687 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 5 | elnnz 12603 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 0cc0 11134 < clt 11274 ℕcn 12245 ℤcz 12593 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 |
| This theorem is referenced by: elfzo0 13722 fzo0n0 13737 fzo0end 13779 fvf1tp 13811 tpf1ofv0 14519 tpfo 14523 wrdsymb1 14576 ccatfv0 14606 ccat1st1st 14651 ccat2s1p1 14652 lswccats1fst 14658 swrdfv0 14672 pfxn0 14709 pfxfv0 14715 pfxtrcfv0 14717 pfx1 14726 cats1un 14744 revs1 14788 repswfsts 14804 cshwidx0mod 14828 cshw1 14845 scshwfzeqfzo 14850 cats1fvn 14882 pfx2 14971 nnnn0modprm0 16831 cshwrepswhash1 17127 efgsval2 19719 efgs1b 19722 efgsp1 19723 efgsres 19724 efgredlemd 19730 efgredlem 19733 efgrelexlemb 19736 pgpfaclem1 20069 dchrisumlem3 27459 tgcgr4 28515 wlkonl1iedg 29650 usgr2pthlem 29750 pthdlem2lem 29754 lfgrn1cycl 29792 uspgrn2crct 29795 crctcshwlkn0lem6 29802 0enwwlksnge1 29851 wwlksm1edg 29868 wwlksnwwlksnon 29902 clwlkclwwlklem2 29986 clwlkclwwlkf1lem3 29992 clwwlkel 30032 clwwlkf1 30035 umgr2cwwk2dif 30050 clwwlknonwwlknonb 30092 upgr3v3e3cycl 30166 upgr4cycl4dv4e 30171 2clwwlk2clwwlk 30336 cycpmco2lem4 33145 cycpmco2lem5 33146 cycpmrn 33159 lmatcl 33852 fib0 34436 signsvtn0 34607 reprpmtf1o 34663 poimirlem3 37652 amgm2d 44189 amgm3d 44190 amgm4d 44191 iccpartigtl 47404 iccpartlt 47405 gpgprismgriedgdmss 48023 gpg3kgrtriex 48058 gpgprismgr4cycllem3 48063 gpgprismgr4cycllem9 48069 amgmw2d 49635 |
| Copyright terms: Public domain | W3C validator |