Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12330 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1094 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 706 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13393 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12329 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 0cc0 10871 < clt 11009 ℕcn 11973 ℤcz 12319 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: elfzo0 13428 fzo0n0 13439 fzo0end 13479 wrdsymb1 14256 ccatfv0 14288 ccat1st1st 14335 ccat2s1p1 14336 ccat2s1p1OLD 14338 lswccats1fst 14345 swrdfv0 14362 pfxn0 14399 pfxfv0 14405 pfxtrcfv0 14407 pfx1 14416 cats1un 14434 revs1 14478 repswfsts 14494 cshwidx0mod 14518 cshw1 14535 scshwfzeqfzo 14539 cats1fvn 14571 pfx2 14660 nnnn0modprm0 16507 cshwrepswhash1 16804 efgsval2 19339 efgs1b 19342 efgsp1 19343 efgsres 19344 efgredlemd 19350 efgredlem 19353 efgrelexlemb 19356 pgpfaclem1 19684 dchrisumlem3 26639 tgcgr4 26892 wlkonl1iedg 28033 usgr2pthlem 28131 pthdlem2lem 28135 lfgrn1cycl 28170 uspgrn2crct 28173 crctcshwlkn0lem6 28180 0enwwlksnge1 28229 wwlksm1edg 28246 wwlksnwwlksnon 28280 clwlkclwwlklem2 28364 clwlkclwwlkf1lem3 28370 clwwlkel 28410 clwwlkf1 28413 umgr2cwwk2dif 28428 clwwlknonwwlknonb 28470 upgr3v3e3cycl 28544 upgr4cycl4dv4e 28549 2clwwlk2clwwlk 28714 cycpmco2lem4 31396 cycpmco2lem5 31397 cycpmrn 31410 lmatcl 31766 fib0 32366 signsvtn0 32549 reprpmtf1o 32606 poimirlem3 35780 amgm2d 41809 amgm3d 41810 amgm4d 41811 iccpartigtl 44875 iccpartlt 44876 amgmw2d 46508 |
Copyright terms: Public domain | W3C validator |