![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1095 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 708 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13722 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12649 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 0cc0 11184 < clt 11324 ℕcn 12293 ℤcz 12639 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: elfzo0 13757 fzo0n0 13768 fzo0end 13808 fvf1tp 13840 tpf1ofv0 14545 tpfo 14549 wrdsymb1 14601 ccatfv0 14631 ccat1st1st 14676 ccat2s1p1 14677 lswccats1fst 14683 swrdfv0 14697 pfxn0 14734 pfxfv0 14740 pfxtrcfv0 14742 pfx1 14751 cats1un 14769 revs1 14813 repswfsts 14829 cshwidx0mod 14853 cshw1 14870 scshwfzeqfzo 14875 cats1fvn 14907 pfx2 14996 nnnn0modprm0 16853 cshwrepswhash1 17150 efgsval2 19775 efgs1b 19778 efgsp1 19779 efgsres 19780 efgredlemd 19786 efgredlem 19789 efgrelexlemb 19792 pgpfaclem1 20125 dchrisumlem3 27553 tgcgr4 28557 wlkonl1iedg 29701 usgr2pthlem 29799 pthdlem2lem 29803 lfgrn1cycl 29838 uspgrn2crct 29841 crctcshwlkn0lem6 29848 0enwwlksnge1 29897 wwlksm1edg 29914 wwlksnwwlksnon 29948 clwlkclwwlklem2 30032 clwlkclwwlkf1lem3 30038 clwwlkel 30078 clwwlkf1 30081 umgr2cwwk2dif 30096 clwwlknonwwlknonb 30138 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 2clwwlk2clwwlk 30382 cycpmco2lem4 33122 cycpmco2lem5 33123 cycpmrn 33136 lmatcl 33762 fib0 34364 signsvtn0 34547 reprpmtf1o 34603 poimirlem3 37583 amgm2d 44160 amgm3d 44161 amgm4d 44162 iccpartigtl 47297 iccpartlt 47298 amgmw2d 48898 |
Copyright terms: Public domain | W3C validator |