Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12260 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1093 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 705 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13322 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12259 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 0cc0 10802 < clt 10940 ℕcn 11903 ℤcz 12249 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: elfzo0 13356 fzo0n0 13367 fzo0end 13407 wrdsymb1 14184 ccatfv0 14216 ccat1st1st 14263 ccat2s1p1 14264 ccat2s1p1OLD 14266 lswccats1fst 14273 swrdfv0 14290 pfxn0 14327 pfxfv0 14333 pfxtrcfv0 14335 pfx1 14344 cats1un 14362 revs1 14406 repswfsts 14422 cshwidx0mod 14446 cshw1 14463 scshwfzeqfzo 14467 cats1fvn 14499 pfx2 14588 nnnn0modprm0 16435 cshwrepswhash1 16732 efgsval2 19254 efgs1b 19257 efgsp1 19258 efgsres 19259 efgredlemd 19265 efgredlem 19268 efgrelexlemb 19271 pgpfaclem1 19599 dchrisumlem3 26544 tgcgr4 26796 wlkonl1iedg 27935 usgr2pthlem 28032 pthdlem2lem 28036 lfgrn1cycl 28071 uspgrn2crct 28074 crctcshwlkn0lem6 28081 0enwwlksnge1 28130 wwlksm1edg 28147 wwlksnwwlksnon 28181 clwlkclwwlklem2 28265 clwlkclwwlkf1lem3 28271 clwwlkel 28311 clwwlkf1 28314 umgr2cwwk2dif 28329 clwwlknonwwlknonb 28371 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 2clwwlk2clwwlk 28615 cycpmco2lem4 31298 cycpmco2lem5 31299 cycpmrn 31312 lmatcl 31668 fib0 32266 signsvtn0 32449 reprpmtf1o 32506 poimirlem3 35707 amgm2d 41698 amgm3d 41699 amgm4d 41700 iccpartigtl 44763 iccpartlt 44764 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |