![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12621 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1094 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 709 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13701 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12620 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 0cc0 11152 < clt 11292 ℕcn 12263 ℤcz 12610 ..^cfzo 13690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 |
This theorem is referenced by: elfzo0 13736 fzo0n0 13751 fzo0end 13793 fvf1tp 13825 tpf1ofv0 14531 tpfo 14535 wrdsymb1 14587 ccatfv0 14617 ccat1st1st 14662 ccat2s1p1 14663 lswccats1fst 14669 swrdfv0 14683 pfxn0 14720 pfxfv0 14726 pfxtrcfv0 14728 pfx1 14737 cats1un 14755 revs1 14799 repswfsts 14815 cshwidx0mod 14839 cshw1 14856 scshwfzeqfzo 14861 cats1fvn 14893 pfx2 14982 nnnn0modprm0 16839 cshwrepswhash1 17136 efgsval2 19765 efgs1b 19768 efgsp1 19769 efgsres 19770 efgredlemd 19776 efgredlem 19779 efgrelexlemb 19782 pgpfaclem1 20115 dchrisumlem3 27549 tgcgr4 28553 wlkonl1iedg 29697 usgr2pthlem 29795 pthdlem2lem 29799 lfgrn1cycl 29834 uspgrn2crct 29837 crctcshwlkn0lem6 29844 0enwwlksnge1 29893 wwlksm1edg 29910 wwlksnwwlksnon 29944 clwlkclwwlklem2 30028 clwlkclwwlkf1lem3 30034 clwwlkel 30074 clwwlkf1 30077 umgr2cwwk2dif 30092 clwwlknonwwlknonb 30134 upgr3v3e3cycl 30208 upgr4cycl4dv4e 30213 2clwwlk2clwwlk 30378 cycpmco2lem4 33131 cycpmco2lem5 33132 cycpmrn 33145 lmatcl 33776 fib0 34380 signsvtn0 34563 reprpmtf1o 34619 poimirlem3 37609 amgm2d 44187 amgm3d 44188 amgm4d 44189 iccpartigtl 47347 iccpartlt 47348 amgmw2d 49034 |
Copyright terms: Public domain | W3C validator |