Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version |
Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12031 | . . 3 ⊢ 0 ∈ ℤ | |
2 | 3anass 1092 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
3 | 1, 2 | mpbiran 708 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
4 | fzolb 13093 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
5 | elnnz 12030 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 306 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 0cc0 10575 < clt 10713 ℕcn 11674 ℤcz 12020 ..^cfzo 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 |
This theorem is referenced by: elfzo0 13127 fzo0n0 13138 fzo0end 13178 wrdsymb1 13952 ccatfv0 13984 ccat1st1st 14031 ccat2s1p1 14032 ccat2s1p1OLD 14034 lswccats1fst 14041 swrdfv0 14058 pfxn0 14095 pfxfv0 14101 pfxtrcfv0 14103 pfx1 14112 cats1un 14130 revs1 14174 repswfsts 14190 cshwidx0mod 14214 cshw1 14231 scshwfzeqfzo 14235 cats1fvn 14267 pfx2 14356 nnnn0modprm0 16198 cshwrepswhash1 16494 efgsval2 18926 efgs1b 18929 efgsp1 18930 efgsres 18931 efgredlemd 18937 efgredlem 18940 efgrelexlemb 18943 pgpfaclem1 19271 dchrisumlem3 26174 tgcgr4 26424 wlkonl1iedg 27554 usgr2pthlem 27651 pthdlem2lem 27655 lfgrn1cycl 27690 uspgrn2crct 27693 crctcshwlkn0lem6 27700 0enwwlksnge1 27749 wwlksm1edg 27766 wwlksnwwlksnon 27800 clwlkclwwlklem2 27884 clwlkclwwlkf1lem3 27890 clwwlkel 27930 clwwlkf1 27933 umgr2cwwk2dif 27948 clwwlknonwwlknonb 27990 upgr3v3e3cycl 28064 upgr4cycl4dv4e 28069 2clwwlk2clwwlk 28234 cycpmco2lem4 30922 cycpmco2lem5 30923 cycpmrn 30936 lmatcl 31287 fib0 31885 signsvtn0 32068 reprpmtf1o 32125 poimirlem3 35340 amgm2d 41277 amgm3d 41278 amgm4d 41279 iccpartigtl 44308 iccpartlt 44309 amgmw2d 45723 |
Copyright terms: Public domain | W3C validator |