| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version | ||
| Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12476 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | 3anass 1094 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
| 4 | fzolb 13562 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 5 | elnnz 12475 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11003 < clt 11143 ℕcn 12122 ℤcz 12465 ..^cfzo 13551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 |
| This theorem is referenced by: elfzo0 13597 fzo0n0 13613 fzo0end 13655 fvf1tp 13690 tpf1ofv0 14400 tpfo 14404 wrdsymb1 14457 ccatfv0 14488 ccat1st1st 14533 ccat2s1p1 14534 lswccats1fst 14540 swrdfv0 14554 pfxn0 14591 pfxfv0 14596 pfxtrcfv0 14598 pfx1 14607 cats1un 14625 revs1 14669 repswfsts 14685 cshwidx0mod 14709 cshw1 14726 scshwfzeqfzo 14730 cats1fvn 14762 pfx2 14851 nnnn0modprm0 16715 cshwrepswhash1 17011 chnccat 18529 efgsval2 19643 efgs1b 19646 efgsp1 19647 efgsres 19648 efgredlemd 19654 efgredlem 19657 efgrelexlemb 19660 pgpfaclem1 19993 dchrisumlem3 27427 tgcgr4 28507 wlkonl1iedg 29640 usgr2pthlem 29739 pthdlem2lem 29743 lfgrn1cycl 29781 uspgrn2crct 29784 crctcshwlkn0lem6 29791 0enwwlksnge1 29840 wwlksm1edg 29857 wwlksnwwlksnon 29891 clwlkclwwlklem2 29975 clwlkclwwlkf1lem3 29981 clwwlkel 30021 clwwlkf1 30024 umgr2cwwk2dif 30039 clwwlknonwwlknonb 30081 upgr3v3e3cycl 30155 upgr4cycl4dv4e 30160 2clwwlk2clwwlk 30325 cycpmco2lem4 33093 cycpmco2lem5 33094 cycpmrn 33107 lmatcl 33824 fib0 34407 signsvtn0 34578 reprpmtf1o 34634 poimirlem3 37662 amgm2d 44230 amgm3d 44231 amgm4d 44232 iccpartigtl 47453 iccpartlt 47454 gpgprismgriedgdmss 48082 gpg3kgrtriex 48119 gpgprismgr4cycllem3 48127 gpgprismgr4cycllem9 48133 gpg5edgnedg 48160 grlimedgnedg 48161 amgmw2d 49835 |
| Copyright terms: Public domain | W3C validator |