| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbfzo0 | Structured version Visualization version GIF version | ||
| Description: An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| lbfzo0 | ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12486 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | 3anass 1094 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (0 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 0 < 𝐴))) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) |
| 4 | fzolb 13567 | . 2 ⊢ (0 ∈ (0..^𝐴) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 5 | elnnz 12485 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 0cc0 11013 < clt 11153 ℕcn 12132 ℤcz 12475 ..^cfzo 13556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 |
| This theorem is referenced by: elfzo0 13602 fzo0n0 13618 fzo0end 13660 fvf1tp 13695 tpf1ofv0 14405 tpfo 14409 wrdsymb1 14462 ccatfv0 14493 ccat1st1st 14538 ccat2s1p1 14539 lswccats1fst 14545 swrdfv0 14559 pfxn0 14596 pfxfv0 14601 pfxtrcfv0 14603 pfx1 14612 cats1un 14630 revs1 14674 repswfsts 14690 cshwidx0mod 14714 cshw1 14731 scshwfzeqfzo 14735 cats1fvn 14767 pfx2 14856 nnnn0modprm0 16720 cshwrepswhash1 17016 chnccat 18534 efgsval2 19647 efgs1b 19650 efgsp1 19651 efgsres 19652 efgredlemd 19658 efgredlem 19661 efgrelexlemb 19664 pgpfaclem1 19997 dchrisumlem3 27430 tgcgr4 28510 wlkonl1iedg 29644 usgr2pthlem 29743 pthdlem2lem 29747 lfgrn1cycl 29785 uspgrn2crct 29788 crctcshwlkn0lem6 29795 0enwwlksnge1 29844 wwlksm1edg 29861 wwlksnwwlksnon 29895 clwlkclwwlklem2 29982 clwlkclwwlkf1lem3 29988 clwwlkel 30028 clwwlkf1 30031 umgr2cwwk2dif 30046 clwwlknonwwlknonb 30088 upgr3v3e3cycl 30162 upgr4cycl4dv4e 30167 2clwwlk2clwwlk 30332 cycpmco2lem4 33105 cycpmco2lem5 33106 cycpmrn 33119 lmatcl 33850 fib0 34433 signsvtn0 34604 reprpmtf1o 34660 poimirlem3 37683 amgm2d 44315 amgm3d 44316 amgm4d 44317 iccpartigtl 47547 iccpartlt 47548 gpgprismgriedgdmss 48176 gpg3kgrtriex 48213 gpgprismgr4cycllem3 48221 gpgprismgr4cycllem9 48227 gpg5edgnedg 48254 grlimedgnedg 48255 amgmw2d 49929 |
| Copyright terms: Public domain | W3C validator |