![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qelioo | Structured version Visualization version GIF version |
Description: The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
qelioo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
qelioo.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
qelioo.3 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
qelioo | ⊢ (𝜑 → ∃𝑥 ∈ ℚ 𝑥 ∈ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qelioo.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | qelioo.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | qelioo.3 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | qbtwnxr 13186 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
6 | 1 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 ∈ ℝ*) |
7 | 2 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐵 ∈ ℝ*) |
8 | qre 12944 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
9 | 8 | ad2antlr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ ℝ) |
10 | simprl 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝐴 < 𝑥) | |
11 | simprr 770 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 < 𝐵) | |
12 | 6, 7, 9, 10, 11 | eliood 44670 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℚ) ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → 𝑥 ∈ (𝐴(,)𝐵)) |
13 | 12 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))) |
14 | 13 | reximdva 3167 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ 𝑥 ∈ (𝐴(,)𝐵))) |
15 | 5, 14 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℚ 𝑥 ∈ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 (class class class)co 7412 ℝcr 11115 ℝ*cxr 11254 < clt 11255 ℚcq 12939 (,)cioo 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-ioo 13335 |
This theorem is referenced by: smfaddlem1 45938 smfmullem3 45968 |
Copyright terms: Public domain | W3C validator |