![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqfeq2 | Structured version Visualization version GIF version |
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqfveq2.1 | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
seqfveq2.2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
seqfeq2.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
seqfeq2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfveq2.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 12831 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | seqfn 13982 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
5 | uzss 12849 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) | |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) |
7 | fnssres 6673 | . . 3 ⊢ ((seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) | |
8 | 4, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) |
9 | eluzelz 12836 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
10 | seqfn 13982 | . . 3 ⊢ (𝐾 ∈ ℤ → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) | |
11 | 1, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) |
12 | fvres 6910 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥)) | |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥)) |
14 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
15 | seqfveq2.2 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) | |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
17 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) | |
18 | elfzuz 13501 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑥) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
19 | seqfeq2.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
20 | 18, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
21 | 20 | adantlr 713 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
22 | 14, 16, 17, 21 | seqfveq2 13994 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) |
23 | 13, 22 | eqtrd 2772 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) |
24 | 8, 11, 23 | eqfnfvd 7035 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 1c1 11113 + caddc 11115 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13488 seqcseq 13970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-seq 13971 |
This theorem is referenced by: seqid 14017 |
Copyright terms: Public domain | W3C validator |