Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqfeq2 | Structured version Visualization version GIF version |
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqfveq2.1 | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
seqfveq2.2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
seqfeq2.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
seqfeq2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfveq2.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 12657 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | seqfn 13803 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
5 | uzss 12675 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) | |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) |
7 | fnssres 6591 | . . 3 ⊢ ((seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) | |
8 | 4, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) |
9 | eluzelz 12662 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
10 | seqfn 13803 | . . 3 ⊢ (𝐾 ∈ ℤ → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) | |
11 | 1, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) |
12 | fvres 6828 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥)) | |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥)) |
14 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
15 | seqfveq2.2 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) | |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
17 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) | |
18 | elfzuz 13322 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑥) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
19 | seqfeq2.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
20 | 18, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
21 | 20 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
22 | 14, 16, 17, 21 | seqfveq2 13815 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) |
23 | 13, 22 | eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) |
24 | 8, 11, 23 | eqfnfvd 6949 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ↾ cres 5607 Fn wfn 6458 ‘cfv 6463 (class class class)co 7313 1c1 10942 + caddc 10944 ℤcz 12389 ℤ≥cuz 12652 ...cfz 13309 seqcseq 13791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-seq 13792 |
This theorem is referenced by: seqid 13838 |
Copyright terms: Public domain | W3C validator |