MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq2 Structured version   Visualization version   GIF version

Theorem seqfeq2 13788
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seqfeq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seqfeq2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑀(𝑘)

Proof of Theorem seqfeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 seqfveq2.1 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
2 eluzel2 12629 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 seqfn 13775 . . . 4 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
41, 2, 33syl 18 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
5 uzss 12647 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
61, 5syl 17 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
7 fnssres 6582 . . 3 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
84, 6, 7syl2anc 585 . 2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
9 eluzelz 12634 . . 3 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
10 seqfn 13775 . . 3 (𝐾 ∈ ℤ → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
111, 9, 103syl 18 . 2 (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
12 fvres 6819 . . . 4 (𝑥 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥))
1312adantl 483 . . 3 ((𝜑𝑥 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑥) = (seq𝑀( + , 𝐹)‘𝑥))
141adantr 482 . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
15 seqfveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
1615adantr 482 . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
17 simpr 486 . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
18 elfzuz 13294 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑥) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
19 seqfeq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
2018, 19sylan2 594 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹𝑘) = (𝐺𝑘))
2120adantlr 713 . . . 4 (((𝜑𝑥 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑥)) → (𝐹𝑘) = (𝐺𝑘))
2214, 16, 17, 21seqfveq2 13787 . . 3 ((𝜑𝑥 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))
2313, 22eqtrd 2776 . 2 ((𝜑𝑥 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))
248, 11, 23eqfnfvd 6940 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wss 3892  cres 5598   Fn wfn 6449  cfv 6454  (class class class)co 7303  1c1 10914   + caddc 10916  cz 12361  cuz 12624  ...cfz 13281  seqcseq 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-om 7741  df-1st 7859  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-rdg 8268  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-nn 12016  df-n0 12276  df-z 12362  df-uz 12625  df-fz 13282  df-seq 13764
This theorem is referenced by:  seqid  13810
  Copyright terms: Public domain W3C validator