Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq Structured version   Visualization version   GIF version

Theorem seqfveq 13397
 Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqfveq.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seqfveq (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   + (𝑘)

Proof of Theorem seqfveq
StepHypRef Expression
1 seqfveq.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12243 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
4 uzid 12253 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 17 . 2 (𝜑𝑀 ∈ (ℤ𝑀))
6 seq1 13384 . . . 4 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
73, 6syl 17 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
8 fveq2 6659 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
9 fveq2 6659 . . . . 5 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
108, 9eqeq12d 2840 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑀) = (𝐺𝑀)))
11 seqfveq.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
1211ralrimiva 3177 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘))
13 eluzfz1 12916 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
141, 13syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
1510, 12, 14rspcdva 3611 . . 3 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
167, 15eqtrd 2859 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐺𝑀))
17 fzp1ss 12960 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
183, 17syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
1918sselda 3953 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
2019, 11syldan 594 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
215, 16, 1, 20seqfveq2 13395 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ⊆ wss 3919  ‘cfv 6344  (class class class)co 7146  1c1 10532   + caddc 10534  ℤcz 11976  ℤ≥cuz 12238  ...cfz 12892  seqcseq 13371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-seq 13372 This theorem is referenced by:  seqfeq  13398  seqf1olem2  13413  seqf1o  13414  sumeq2ii  15048  fsum  15075  fsumser  15085  prodeq2ii  15265  fprod  15293  fprodntriv  15294  gsumsgrpccat  18002  gsumccatOLD  18003  mulgnngsum  18231  gsumzaddlem  19039  gsumconst  19052  wilthlem3  25653  gsumnunsn  31838  mblfinlem2  35007
 Copyright terms: Public domain W3C validator