MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid3 Structured version   Visualization version   GIF version

Theorem seqid3 13767
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.)
Hypotheses
Ref Expression
seqid3.1 (𝜑 → (𝑍 + 𝑍) = 𝑍)
seqid3.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqid3.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥   𝑥,𝑍   𝑥,𝑁

Proof of Theorem seqid3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 seqid3.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 seqid3.3 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
3 fvex 6787 . . . . 5 (𝐹𝑥) ∈ V
43elsn 4576 . . . 4 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
52, 4sylibr 233 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑍})
6 seqid3.1 . . . . . 6 (𝜑 → (𝑍 + 𝑍) = 𝑍)
7 ovex 7308 . . . . . . 7 (𝑍 + 𝑍) ∈ V
87elsn 4576 . . . . . 6 ((𝑍 + 𝑍) ∈ {𝑍} ↔ (𝑍 + 𝑍) = 𝑍)
96, 8sylibr 233 . . . . 5 (𝜑 → (𝑍 + 𝑍) ∈ {𝑍})
10 elsni 4578 . . . . . . 7 (𝑥 ∈ {𝑍} → 𝑥 = 𝑍)
11 elsni 4578 . . . . . . 7 (𝑦 ∈ {𝑍} → 𝑦 = 𝑍)
1210, 11oveqan12d 7294 . . . . . 6 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) = (𝑍 + 𝑍))
1312eleq1d 2823 . . . . 5 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑍 + 𝑍) ∈ {𝑍}))
149, 13syl5ibrcom 246 . . . 4 (𝜑 → ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) ∈ {𝑍}))
1514imp 407 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍})) → (𝑥 + 𝑦) ∈ {𝑍})
161, 5, 15seqcl 13743 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍})
17 elsni 4578 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
1816, 17syl 17 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cfv 6433  (class class class)co 7275  cuz 12582  ...cfz 13239  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722
This theorem is referenced by:  seqid  13768  ser0  13775  prodf1  15603  gsumval2  18370  mulgnn0z  18730  gsumval3  19508  lgsval2lem  26455
  Copyright terms: Public domain W3C validator