MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqid3 Structured version   Visualization version   GIF version

Theorem seqid3 14069
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.)
Hypotheses
Ref Expression
seqid3.1 (𝜑 → (𝑍 + 𝑍) = 𝑍)
seqid3.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqid3.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
Assertion
Ref Expression
seqid3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥, +   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥   𝑥,𝑍   𝑥,𝑁

Proof of Theorem seqid3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 seqid3.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 seqid3.3 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)
3 fvex 6894 . . . . 5 (𝐹𝑥) ∈ V
43elsn 4621 . . . 4 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
52, 4sylibr 234 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑍})
6 seqid3.1 . . . . . 6 (𝜑 → (𝑍 + 𝑍) = 𝑍)
7 ovex 7443 . . . . . . 7 (𝑍 + 𝑍) ∈ V
87elsn 4621 . . . . . 6 ((𝑍 + 𝑍) ∈ {𝑍} ↔ (𝑍 + 𝑍) = 𝑍)
96, 8sylibr 234 . . . . 5 (𝜑 → (𝑍 + 𝑍) ∈ {𝑍})
10 elsni 4623 . . . . . . 7 (𝑥 ∈ {𝑍} → 𝑥 = 𝑍)
11 elsni 4623 . . . . . . 7 (𝑦 ∈ {𝑍} → 𝑦 = 𝑍)
1210, 11oveqan12d 7429 . . . . . 6 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) = (𝑍 + 𝑍))
1312eleq1d 2820 . . . . 5 ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑍 + 𝑍) ∈ {𝑍}))
149, 13syl5ibrcom 247 . . . 4 (𝜑 → ((𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍}) → (𝑥 + 𝑦) ∈ {𝑍}))
1514imp 406 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦 ∈ {𝑍})) → (𝑥 + 𝑦) ∈ {𝑍})
161, 5, 15seqcl 14045 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍})
17 elsni 4623 . 2 ((seq𝑀( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
1816, 17syl 17 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606  cfv 6536  (class class class)co 7410  cuz 12857  ...cfz 13529  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025
This theorem is referenced by:  seqid  14070  ser0  14077  prodf1  15912  gsumval2  18669  mulgnn0z  19089  gsumval3  19893  lgsval2lem  27275
  Copyright terms: Public domain W3C validator