Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem2 Structured version   Visualization version   GIF version

Theorem jm3.1lem2 39613
Description: Lemma for jm3.1 39615. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem2 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))

Proof of Theorem jm3.1lem2
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 12253 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11954 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 13526 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
8 eluzelre 12253 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
97, 8syl 17 . 2 (𝜑𝐴 ∈ ℝ)
10 2re 11710 . . . . . 6 2 ∈ ℝ
11 remulcl 10621 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
1210, 9, 11sylancr 589 . . . . 5 (𝜑 → (2 · 𝐴) ∈ ℝ)
1312, 3remulcld 10670 . . . 4 (𝜑 → ((2 · 𝐴) · 𝐾) ∈ ℝ)
143resqcld 13610 . . . 4 (𝜑 → (𝐾↑2) ∈ ℝ)
1513, 14resubcld 11067 . . 3 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ)
16 1re 10640 . . 3 1 ∈ ℝ
17 resubcl 10949 . . 3 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
1815, 16, 17sylancl 588 . 2 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
19 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
207, 1, 4, 19jm3.1lem1 39612 . 2 (𝜑 → (𝐾𝑁) < 𝐴)
219, 3remulcld 10670 . . . 4 (𝜑 → (𝐴 · 𝐾) ∈ ℝ)
22 resubcl 10949 . . . . 5 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 − 1) ∈ ℝ)
233, 16, 22sylancl 588 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℝ)
2421, 23readdcld 10669 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ∈ ℝ)
25 eluz2b1 12318 . . . . . . 7 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 1 < 𝐾))
2625simprbi 499 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
271, 26syl 17 . . . . 5 (𝜑 → 1 < 𝐾)
28 eluz2nn 12283 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
297, 28syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3029nngt0d 11685 . . . . . 6 (𝜑 → 0 < 𝐴)
31 ltmulgt11 11499 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
329, 3, 30, 31syl3anc 1367 . . . . 5 (𝜑 → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
3327, 32mpbid 234 . . . 4 (𝜑𝐴 < (𝐴 · 𝐾))
34 uz2m1nn 12322 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
351, 34syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
3635nnrpd 12428 . . . . 5 (𝜑 → (𝐾 − 1) ∈ ℝ+)
3721, 36ltaddrpd 12463 . . . 4 (𝜑 → (𝐴 · 𝐾) < ((𝐴 · 𝐾) + (𝐾 − 1)))
389, 21, 24, 33, 37lttrd 10800 . . 3 (𝜑𝐴 < ((𝐴 · 𝐾) + (𝐾 − 1)))
39 peano2re 10812 . . . . . . 7 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
403, 39syl 17 . . . . . 6 (𝜑 → (𝐾 + 1) ∈ ℝ)
4140, 3remulcld 10670 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℝ)
42 resubcl 10949 . . . . . . 7 (((𝐴 · 𝐾) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4321, 16, 42sylancl 588 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4443, 14resubcld 11067 . . . . 5 (𝜑 → (((𝐴 · 𝐾) − 1) − (𝐾↑2)) ∈ ℝ)
453recnd 10668 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4645exp1d 13504 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
47 eluz2nn 12283 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
481, 47syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
4948nnge1d 11684 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝐾)
50 nnuz 12280 . . . . . . . . . . 11 ℕ = (ℤ‘1)
514, 50eleqtrdi 2923 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
523, 49, 51leexp2ad 13616 . . . . . . . . 9 (𝜑 → (𝐾↑1) ≤ (𝐾𝑁))
5346, 52eqbrtrrd 5089 . . . . . . . 8 (𝜑𝐾 ≤ (𝐾𝑁))
543, 6, 9, 53, 20lelttrd 10797 . . . . . . 7 (𝜑𝐾 < 𝐴)
55 eluzelz 12252 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℤ)
561, 55syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
57 eluzelz 12252 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
587, 57syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
59 zltp1le 12031 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6056, 58, 59syl2anc 586 . . . . . . 7 (𝜑 → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6154, 60mpbid 234 . . . . . 6 (𝜑 → (𝐾 + 1) ≤ 𝐴)
6248nngt0d 11685 . . . . . . 7 (𝜑 → 0 < 𝐾)
63 lemul1 11491 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6440, 9, 3, 62, 63syl112anc 1370 . . . . . 6 (𝜑 → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6561, 64mpbid 234 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾))
6641, 21, 44, 65leadd1dd 11253 . . . 4 (𝜑 → (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))) ≤ ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
6721recnd 10668 . . . . . 6 (𝜑 → (𝐴 · 𝐾) ∈ ℂ)
6841, 14resubcld 11067 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℝ)
6968recnd 10668 . . . . . 6 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℂ)
70 1cnd 10635 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7167, 69, 70addsub12d 11019 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)))
7245, 70, 45adddird 10665 . . . . . . . . 9 (𝜑 → ((𝐾 + 1) · 𝐾) = ((𝐾 · 𝐾) + (1 · 𝐾)))
7345sqvald 13506 . . . . . . . . 9 (𝜑 → (𝐾↑2) = (𝐾 · 𝐾))
7472, 73oveq12d 7173 . . . . . . . 8 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)))
7545, 45mulcld 10660 . . . . . . . . 9 (𝜑 → (𝐾 · 𝐾) ∈ ℂ)
76 ax-1cn 10594 . . . . . . . . . 10 1 ∈ ℂ
77 mulcl 10620 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (1 · 𝐾) ∈ ℂ)
7876, 45, 77sylancr 589 . . . . . . . . 9 (𝜑 → (1 · 𝐾) ∈ ℂ)
7975, 78pncan2d 10998 . . . . . . . 8 (𝜑 → (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)) = (1 · 𝐾))
8045mulid2d 10658 . . . . . . . 8 (𝜑 → (1 · 𝐾) = 𝐾)
8174, 79, 803eqtrd 2860 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = 𝐾)
8281oveq1d 7170 . . . . . 6 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1) = (𝐾 − 1))
8382oveq2d 7171 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((𝐴 · 𝐾) + (𝐾 − 1)))
8441recnd 10668 . . . . . 6 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℂ)
8514recnd 10668 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℂ)
8643recnd 10668 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℂ)
8784, 85, 86subadd23d 11018 . . . . 5 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
8871, 83, 873eqtr3d 2864 . . . 4 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
89 2cnd 11714 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
909recnd 10668 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
9189, 90, 45mulassd 10663 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · 𝐾) = (2 · (𝐴 · 𝐾)))
92672timesd 11879 . . . . . . . 8 (𝜑 → (2 · (𝐴 · 𝐾)) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9391, 92eqtrd 2856 . . . . . . 7 (𝜑 → ((2 · 𝐴) · 𝐾) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9493oveq1d 7170 . . . . . 6 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) = (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)))
9594oveq1d 7170 . . . . 5 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1))
9621, 21readdcld 10669 . . . . . . 7 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℝ)
9796recnd 10668 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℂ)
9897, 85, 70sub32d 11028 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)))
9967, 67, 70addsubassd 11016 . . . . . . 7 (𝜑 → (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) = ((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)))
10099oveq1d 7170 . . . . . 6 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)))
10167, 86, 85addsubassd 11016 . . . . . 6 (𝜑 → (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
102100, 101eqtrd 2856 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10395, 98, 1023eqtrd 2860 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10466, 88, 1033brtr4d 5097 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ≤ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1059, 24, 18, 38, 104ltletrd 10799 . 2 (𝜑𝐴 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1066, 9, 18, 20, 105lttrd 10800 1 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869  cn 11637  2c2 11691  cz 11980  cuz 12242  cexp 13428   Yrm crmy 39496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-dvds 15607  df-gcd 15843  df-numer 16074  df-denom 16075  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-squarenn 39436  df-pell1qr 39437  df-pell14qr 39438  df-pell1234qr 39439  df-pellfund 39440  df-rmx 39497  df-rmy 39498
This theorem is referenced by:  jm3.1lem3  39614  jm3.1  39615
  Copyright terms: Public domain W3C validator