Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem2 Structured version   Visualization version   GIF version

Theorem jm3.1lem2 40840
Description: Lemma for jm3.1 40842. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem2 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))

Proof of Theorem jm3.1lem2
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 12593 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12293 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 13881 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
8 eluzelre 12593 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
97, 8syl 17 . 2 (𝜑𝐴 ∈ ℝ)
10 2re 12047 . . . . . 6 2 ∈ ℝ
11 remulcl 10956 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
1210, 9, 11sylancr 587 . . . . 5 (𝜑 → (2 · 𝐴) ∈ ℝ)
1312, 3remulcld 11005 . . . 4 (𝜑 → ((2 · 𝐴) · 𝐾) ∈ ℝ)
143resqcld 13965 . . . 4 (𝜑 → (𝐾↑2) ∈ ℝ)
1513, 14resubcld 11403 . . 3 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ)
16 1re 10975 . . 3 1 ∈ ℝ
17 resubcl 11285 . . 3 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
1815, 16, 17sylancl 586 . 2 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
19 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
207, 1, 4, 19jm3.1lem1 40839 . 2 (𝜑 → (𝐾𝑁) < 𝐴)
219, 3remulcld 11005 . . . 4 (𝜑 → (𝐴 · 𝐾) ∈ ℝ)
22 resubcl 11285 . . . . 5 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 − 1) ∈ ℝ)
233, 16, 22sylancl 586 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℝ)
2421, 23readdcld 11004 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ∈ ℝ)
25 eluz2b1 12659 . . . . . . 7 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 1 < 𝐾))
2625simprbi 497 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
271, 26syl 17 . . . . 5 (𝜑 → 1 < 𝐾)
28 eluz2nn 12624 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
297, 28syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3029nngt0d 12022 . . . . . 6 (𝜑 → 0 < 𝐴)
31 ltmulgt11 11835 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
329, 3, 30, 31syl3anc 1370 . . . . 5 (𝜑 → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
3327, 32mpbid 231 . . . 4 (𝜑𝐴 < (𝐴 · 𝐾))
34 uz2m1nn 12663 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
351, 34syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
3635nnrpd 12770 . . . . 5 (𝜑 → (𝐾 − 1) ∈ ℝ+)
3721, 36ltaddrpd 12805 . . . 4 (𝜑 → (𝐴 · 𝐾) < ((𝐴 · 𝐾) + (𝐾 − 1)))
389, 21, 24, 33, 37lttrd 11136 . . 3 (𝜑𝐴 < ((𝐴 · 𝐾) + (𝐾 − 1)))
39 peano2re 11148 . . . . . . 7 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
403, 39syl 17 . . . . . 6 (𝜑 → (𝐾 + 1) ∈ ℝ)
4140, 3remulcld 11005 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℝ)
42 resubcl 11285 . . . . . . 7 (((𝐴 · 𝐾) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4321, 16, 42sylancl 586 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4443, 14resubcld 11403 . . . . 5 (𝜑 → (((𝐴 · 𝐾) − 1) − (𝐾↑2)) ∈ ℝ)
453recnd 11003 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4645exp1d 13859 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
47 eluz2nn 12624 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
481, 47syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
4948nnge1d 12021 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝐾)
50 nnuz 12621 . . . . . . . . . . 11 ℕ = (ℤ‘1)
514, 50eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
523, 49, 51leexp2ad 13971 . . . . . . . . 9 (𝜑 → (𝐾↑1) ≤ (𝐾𝑁))
5346, 52eqbrtrrd 5098 . . . . . . . 8 (𝜑𝐾 ≤ (𝐾𝑁))
543, 6, 9, 53, 20lelttrd 11133 . . . . . . 7 (𝜑𝐾 < 𝐴)
55 eluzelz 12592 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℤ)
561, 55syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
57 eluzelz 12592 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
587, 57syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
59 zltp1le 12370 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6056, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6154, 60mpbid 231 . . . . . 6 (𝜑 → (𝐾 + 1) ≤ 𝐴)
6248nngt0d 12022 . . . . . . 7 (𝜑 → 0 < 𝐾)
63 lemul1 11827 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6440, 9, 3, 62, 63syl112anc 1373 . . . . . 6 (𝜑 → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6561, 64mpbid 231 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾))
6641, 21, 44, 65leadd1dd 11589 . . . 4 (𝜑 → (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))) ≤ ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
6721recnd 11003 . . . . . 6 (𝜑 → (𝐴 · 𝐾) ∈ ℂ)
6841, 14resubcld 11403 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℝ)
6968recnd 11003 . . . . . 6 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℂ)
70 1cnd 10970 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7167, 69, 70addsub12d 11355 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)))
7245, 70, 45adddird 11000 . . . . . . . . 9 (𝜑 → ((𝐾 + 1) · 𝐾) = ((𝐾 · 𝐾) + (1 · 𝐾)))
7345sqvald 13861 . . . . . . . . 9 (𝜑 → (𝐾↑2) = (𝐾 · 𝐾))
7472, 73oveq12d 7293 . . . . . . . 8 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)))
7545, 45mulcld 10995 . . . . . . . . 9 (𝜑 → (𝐾 · 𝐾) ∈ ℂ)
76 ax-1cn 10929 . . . . . . . . . 10 1 ∈ ℂ
77 mulcl 10955 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (1 · 𝐾) ∈ ℂ)
7876, 45, 77sylancr 587 . . . . . . . . 9 (𝜑 → (1 · 𝐾) ∈ ℂ)
7975, 78pncan2d 11334 . . . . . . . 8 (𝜑 → (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)) = (1 · 𝐾))
8045mulid2d 10993 . . . . . . . 8 (𝜑 → (1 · 𝐾) = 𝐾)
8174, 79, 803eqtrd 2782 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = 𝐾)
8281oveq1d 7290 . . . . . 6 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1) = (𝐾 − 1))
8382oveq2d 7291 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((𝐴 · 𝐾) + (𝐾 − 1)))
8441recnd 11003 . . . . . 6 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℂ)
8514recnd 11003 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℂ)
8643recnd 11003 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℂ)
8784, 85, 86subadd23d 11354 . . . . 5 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
8871, 83, 873eqtr3d 2786 . . . 4 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
89 2cnd 12051 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
909recnd 11003 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
9189, 90, 45mulassd 10998 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · 𝐾) = (2 · (𝐴 · 𝐾)))
92672timesd 12216 . . . . . . . 8 (𝜑 → (2 · (𝐴 · 𝐾)) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9391, 92eqtrd 2778 . . . . . . 7 (𝜑 → ((2 · 𝐴) · 𝐾) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9493oveq1d 7290 . . . . . 6 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) = (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)))
9594oveq1d 7290 . . . . 5 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1))
9621, 21readdcld 11004 . . . . . . 7 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℝ)
9796recnd 11003 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℂ)
9897, 85, 70sub32d 11364 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)))
9967, 67, 70addsubassd 11352 . . . . . . 7 (𝜑 → (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) = ((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)))
10099oveq1d 7290 . . . . . 6 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)))
10167, 86, 85addsubassd 11352 . . . . . 6 (𝜑 → (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
102100, 101eqtrd 2778 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10395, 98, 1023eqtrd 2782 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10466, 88, 1033brtr4d 5106 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ≤ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1059, 24, 18, 38, 104ltletrd 11135 . 2 (𝜑𝐴 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1066, 9, 18, 20, 105lttrd 11136 1 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  cz 12319  cuz 12582  cexp 13782   Yrm crmy 40723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667  df-rmx 40724  df-rmy 40725
This theorem is referenced by:  jm3.1lem3  40841  jm3.1  40842
  Copyright terms: Public domain W3C validator