Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem2 Structured version   Visualization version   GIF version

Theorem jm3.1lem2 43030
Description: Lemma for jm3.1 43032. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem2 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))

Proof of Theorem jm3.1lem2
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 12889 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12587 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 14203 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
8 eluzelre 12889 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
97, 8syl 17 . 2 (𝜑𝐴 ∈ ℝ)
10 2re 12340 . . . . . 6 2 ∈ ℝ
11 remulcl 11240 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
1210, 9, 11sylancr 587 . . . . 5 (𝜑 → (2 · 𝐴) ∈ ℝ)
1312, 3remulcld 11291 . . . 4 (𝜑 → ((2 · 𝐴) · 𝐾) ∈ ℝ)
143resqcld 14165 . . . 4 (𝜑 → (𝐾↑2) ∈ ℝ)
1513, 14resubcld 11691 . . 3 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ)
16 1re 11261 . . 3 1 ∈ ℝ
17 resubcl 11573 . . 3 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
1815, 16, 17sylancl 586 . 2 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
19 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
207, 1, 4, 19jm3.1lem1 43029 . 2 (𝜑 → (𝐾𝑁) < 𝐴)
219, 3remulcld 11291 . . . 4 (𝜑 → (𝐴 · 𝐾) ∈ ℝ)
22 resubcl 11573 . . . . 5 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 − 1) ∈ ℝ)
233, 16, 22sylancl 586 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℝ)
2421, 23readdcld 11290 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ∈ ℝ)
25 eluz2b1 12961 . . . . . . 7 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 1 < 𝐾))
2625simprbi 496 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
271, 26syl 17 . . . . 5 (𝜑 → 1 < 𝐾)
28 eluz2nn 12924 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
297, 28syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3029nngt0d 12315 . . . . . 6 (𝜑 → 0 < 𝐴)
31 ltmulgt11 12127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
329, 3, 30, 31syl3anc 1373 . . . . 5 (𝜑 → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
3327, 32mpbid 232 . . . 4 (𝜑𝐴 < (𝐴 · 𝐾))
34 uz2m1nn 12965 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
351, 34syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
3635nnrpd 13075 . . . . 5 (𝜑 → (𝐾 − 1) ∈ ℝ+)
3721, 36ltaddrpd 13110 . . . 4 (𝜑 → (𝐴 · 𝐾) < ((𝐴 · 𝐾) + (𝐾 − 1)))
389, 21, 24, 33, 37lttrd 11422 . . 3 (𝜑𝐴 < ((𝐴 · 𝐾) + (𝐾 − 1)))
39 peano2re 11434 . . . . . . 7 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
403, 39syl 17 . . . . . 6 (𝜑 → (𝐾 + 1) ∈ ℝ)
4140, 3remulcld 11291 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℝ)
42 resubcl 11573 . . . . . . 7 (((𝐴 · 𝐾) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4321, 16, 42sylancl 586 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4443, 14resubcld 11691 . . . . 5 (𝜑 → (((𝐴 · 𝐾) − 1) − (𝐾↑2)) ∈ ℝ)
453recnd 11289 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4645exp1d 14181 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
47 eluz2nn 12924 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
481, 47syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
4948nnge1d 12314 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝐾)
50 nnuz 12921 . . . . . . . . . . 11 ℕ = (ℤ‘1)
514, 50eleqtrdi 2851 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
523, 49, 51leexp2ad 14293 . . . . . . . . 9 (𝜑 → (𝐾↑1) ≤ (𝐾𝑁))
5346, 52eqbrtrrd 5167 . . . . . . . 8 (𝜑𝐾 ≤ (𝐾𝑁))
543, 6, 9, 53, 20lelttrd 11419 . . . . . . 7 (𝜑𝐾 < 𝐴)
55 eluzelz 12888 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℤ)
561, 55syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
57 eluzelz 12888 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
587, 57syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
59 zltp1le 12667 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6056, 58, 59syl2anc 584 . . . . . . 7 (𝜑 → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6154, 60mpbid 232 . . . . . 6 (𝜑 → (𝐾 + 1) ≤ 𝐴)
6248nngt0d 12315 . . . . . . 7 (𝜑 → 0 < 𝐾)
63 lemul1 12119 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6440, 9, 3, 62, 63syl112anc 1376 . . . . . 6 (𝜑 → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6561, 64mpbid 232 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾))
6641, 21, 44, 65leadd1dd 11877 . . . 4 (𝜑 → (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))) ≤ ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
6721recnd 11289 . . . . . 6 (𝜑 → (𝐴 · 𝐾) ∈ ℂ)
6841, 14resubcld 11691 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℝ)
6968recnd 11289 . . . . . 6 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℂ)
70 1cnd 11256 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7167, 69, 70addsub12d 11643 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)))
7245, 70, 45adddird 11286 . . . . . . . . 9 (𝜑 → ((𝐾 + 1) · 𝐾) = ((𝐾 · 𝐾) + (1 · 𝐾)))
7345sqvald 14183 . . . . . . . . 9 (𝜑 → (𝐾↑2) = (𝐾 · 𝐾))
7472, 73oveq12d 7449 . . . . . . . 8 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)))
7545, 45mulcld 11281 . . . . . . . . 9 (𝜑 → (𝐾 · 𝐾) ∈ ℂ)
76 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
77 mulcl 11239 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (1 · 𝐾) ∈ ℂ)
7876, 45, 77sylancr 587 . . . . . . . . 9 (𝜑 → (1 · 𝐾) ∈ ℂ)
7975, 78pncan2d 11622 . . . . . . . 8 (𝜑 → (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)) = (1 · 𝐾))
8045mullidd 11279 . . . . . . . 8 (𝜑 → (1 · 𝐾) = 𝐾)
8174, 79, 803eqtrd 2781 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = 𝐾)
8281oveq1d 7446 . . . . . 6 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1) = (𝐾 − 1))
8382oveq2d 7447 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((𝐴 · 𝐾) + (𝐾 − 1)))
8441recnd 11289 . . . . . 6 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℂ)
8514recnd 11289 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℂ)
8643recnd 11289 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℂ)
8784, 85, 86subadd23d 11642 . . . . 5 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
8871, 83, 873eqtr3d 2785 . . . 4 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
89 2cnd 12344 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
909recnd 11289 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
9189, 90, 45mulassd 11284 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · 𝐾) = (2 · (𝐴 · 𝐾)))
92672timesd 12509 . . . . . . . 8 (𝜑 → (2 · (𝐴 · 𝐾)) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9391, 92eqtrd 2777 . . . . . . 7 (𝜑 → ((2 · 𝐴) · 𝐾) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9493oveq1d 7446 . . . . . 6 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) = (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)))
9594oveq1d 7446 . . . . 5 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1))
9621, 21readdcld 11290 . . . . . . 7 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℝ)
9796recnd 11289 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℂ)
9897, 85, 70sub32d 11652 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)))
9967, 67, 70addsubassd 11640 . . . . . . 7 (𝜑 → (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) = ((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)))
10099oveq1d 7446 . . . . . 6 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)))
10167, 86, 85addsubassd 11640 . . . . . 6 (𝜑 → (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
102100, 101eqtrd 2777 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10395, 98, 1023eqtrd 2781 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10466, 88, 1033brtr4d 5175 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ≤ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1059, 24, 18, 38, 104ltletrd 11421 . 2 (𝜑𝐴 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1066, 9, 18, 20, 105lttrd 11422 1 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  cz 12613  cuz 12878  cexp 14102   Yrm crmy 42912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-squarenn 42852  df-pell1qr 42853  df-pell14qr 42854  df-pell1234qr 42855  df-pellfund 42856  df-rmx 42913  df-rmy 42914
This theorem is referenced by:  jm3.1lem3  43031  jm3.1  43032
  Copyright terms: Public domain W3C validator