MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsm02 Structured version   Visualization version   GIF version

Theorem lsm02 19578
Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsm01.z 0 = (0g𝐺)
lsm01.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsm02 (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } 𝑋) = 𝑋)

Proof of Theorem lsm02
StepHypRef Expression
1 subgrcl 19039 . . 3 (𝑋 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 lsm01.z . . . 4 0 = (0g𝐺)
320subg 19059 . . 3 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
41, 3syl 17 . 2 (𝑋 ∈ (SubGrp‘𝐺) → { 0 } ∈ (SubGrp‘𝐺))
5 id 22 . 2 (𝑋 ∈ (SubGrp‘𝐺) → 𝑋 ∈ (SubGrp‘𝐺))
62subg0cl 19042 . . 3 (𝑋 ∈ (SubGrp‘𝐺) → 0𝑋)
76snssd 4769 . 2 (𝑋 ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝑋)
8 lsm01.p . . 3 = (LSSum‘𝐺)
98lsmss1 19571 . 2 (({ 0 } ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑋) → ({ 0 } 𝑋) = 𝑋)
104, 5, 7, 9syl3anc 1373 1 (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  0gc0g 17378  Grpcgrp 18841  SubGrpcsubg 19028  LSSumclsm 19540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-subg 19031  df-lsm 19542
This theorem is referenced by:  qus0g  33351  nsgqus0  33354  nsgmgclem  33355  idlsrg0g  33450  idlsrgmnd  33458  dochsat  41350  dihjat1lem  41395  dochexmid  41435  lcfrlem23  41532
  Copyright terms: Public domain W3C validator