Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsm02 | Structured version Visualization version GIF version |
Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsm01.z | ⊢ 0 = (0g‘𝐺) |
lsm01.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsm02 | ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 18548 | . . 3 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | lsm01.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 2 | 0subg 18568 | . . 3 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → { 0 } ∈ (SubGrp‘𝐺)) |
5 | id 22 | . 2 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → 𝑋 ∈ (SubGrp‘𝐺)) | |
6 | 2 | subg0cl 18551 | . . 3 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑋) |
7 | 6 | snssd 4722 | . 2 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → { 0 } ⊆ 𝑋) |
8 | lsm01.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
9 | 8 | lsmss1 19055 | . 2 ⊢ (({ 0 } ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ (SubGrp‘𝐺) ∧ { 0 } ⊆ 𝑋) → ({ 0 } ⊕ 𝑋) = 𝑋) |
10 | 4, 5, 7, 9 | syl3anc 1373 | 1 ⊢ (𝑋 ∈ (SubGrp‘𝐺) → ({ 0 } ⊕ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 {csn 4541 ‘cfv 6380 (class class class)co 7213 0gc0g 16944 Grpcgrp 18365 SubGrpcsubg 18537 LSSumclsm 19023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-subg 18540 df-lsm 19025 |
This theorem is referenced by: nsgqus0 31309 nsgmgclem 31310 idlsrg0g 31365 idlsrgmnd 31373 dochsat 39134 dihjat1lem 39179 dochexmid 39219 lcfrlem23 39316 |
Copyright terms: Public domain | W3C validator |