Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfznn0 | Structured version Visualization version GIF version |
Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfznn0 | ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 13347 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
2 | 1 | simp1bi 1144 | 1 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) |
Copyright terms: Public domain | W3C validator |