Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdlfuhgr1v | Structured version Visualization version GIF version |
Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
vtxdlfuhgr1v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdlfuhgr1v.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxdlfuhgr1v.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
vtxdlfuhgr1v | ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → 𝐺 ∈ UHGraph) | |
2 | simpr 485 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ 𝑉) | |
3 | vtxdlfuhgr1v.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | vtxdlfuhgr1v.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | vtxdlfuhgr1v.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
6 | 3, 4, 5 | lfuhgr1v0e 27631 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (Edg‘𝐺) = ∅) |
7 | 6 | adantr 481 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → (Edg‘𝐺) = ∅) |
8 | eqid 2738 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
9 | 3, 8 | vtxduhgr0e 27855 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (Edg‘𝐺) = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
10 | 1, 2, 7, 9 | syl3anc 1370 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
11 | 10 | ex 413 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5073 dom cdm 5584 ⟶wf 6422 ‘cfv 6426 0cc0 10881 1c1 10882 ≤ cle 11020 2c2 12038 ♯chash 14054 Vtxcvtx 27376 iEdgciedg 27377 Edgcedg 27427 UHGraphcuhgr 27436 VtxDegcvtxdg 27842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-n0 12244 df-z 12330 df-uz 12593 df-xadd 12859 df-fz 13250 df-hash 14055 df-edg 27428 df-uhgr 27438 df-vtxdg 27843 |
This theorem is referenced by: vdumgr0 27857 |
Copyright terms: Public domain | W3C validator |