| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdlfuhgr1v | Structured version Visualization version GIF version | ||
| Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021.) |
| Ref | Expression |
|---|---|
| vtxdlfuhgr1v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdlfuhgr1v.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdlfuhgr1v.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
| Ref | Expression |
|---|---|
| vtxdlfuhgr1v | ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → 𝐺 ∈ UHGraph) | |
| 2 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ 𝑉) | |
| 3 | vtxdlfuhgr1v.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxdlfuhgr1v.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | vtxdlfuhgr1v.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 6 | 3, 4, 5 | lfuhgr1v0e 29234 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (Edg‘𝐺) = ∅) |
| 7 | 6 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → (Edg‘𝐺) = ∅) |
| 8 | eqid 2733 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 9 | 3, 8 | vtxduhgr0e 29459 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (Edg‘𝐺) = ∅) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
| 10 | 1, 2, 7, 9 | syl3anc 1373 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = 0) |
| 11 | 10 | ex 412 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼⟶𝐸) → (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 ∅c0 4282 𝒫 cpw 4549 class class class wbr 5093 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 0cc0 11013 1c1 11014 ≤ cle 11154 2c2 12187 ♯chash 14239 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 UHGraphcuhgr 29036 VtxDegcvtxdg 29446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-xadd 13014 df-fz 13410 df-hash 14240 df-edg 29028 df-uhgr 29038 df-vtxdg 29447 |
| This theorem is referenced by: vdumgr0 29461 |
| Copyright terms: Public domain | W3C validator |