Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem6 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem6 27704
 Description: Lemma 6 for wlkiswwlks2 27705. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥   𝑖,𝐸   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem wlkiswwlks2lem6
StepHypRef Expression
1 wlkiswwlks2lem.f . . . . 5 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
2 wlkiswwlks2lem.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2wlkiswwlks2lem5 27703 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
43imp 410 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝐹 ∈ Word dom 𝐸)
51wlkiswwlks2lem3 27701 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
653adant1 1127 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
76adantr 484 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
81, 2wlkiswwlks2lem4 27702 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98imp 410 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
104, 7, 93jca 1125 . 2 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1110ex 416 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {cpr 4530   class class class wbr 5034   ↦ cmpt 5114  ◡ccnv 5522  dom cdm 5523  ran crn 5524  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  0cc0 10544  1c1 10545   + caddc 10547   ≤ cle 10683   − cmin 10877  ...cfz 12905  ..^cfzo 13048  ♯chash 13706  Word cword 13877  iEdgciedg 26834  USPGraphcuspgr 26985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-hash 13707  df-word 13878  df-edg 26885  df-uspgr 26987 This theorem is referenced by:  wlkiswwlks2  27705
 Copyright terms: Public domain W3C validator