Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlm1 Structured version   Visualization version   GIF version

Theorem zlm1 32276
Description: Unity element of a -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
zlmlem2.1 𝑊 = (ℤMod‘𝐺)
zlm1.1 1 = (1r𝐺)
Assertion
Ref Expression
zlm1 1 = (1r𝑊)

Proof of Theorem zlm1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlm1.1 . 2 1 = (1r𝐺)
2 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
32a1i 11 . . . 4 (⊤ → (Base‘𝐺) = (Base‘𝐺))
4 zlmlem2.1 . . . . . 6 𝑊 = (ℤMod‘𝐺)
54, 2zlmbas 20833 . . . . 5 (Base‘𝐺) = (Base‘𝑊)
65a1i 11 . . . 4 (⊤ → (Base‘𝐺) = (Base‘𝑊))
7 eqid 2737 . . . . . . 7 (.r𝐺) = (.r𝐺)
84, 7zlmmulr 20837 . . . . . 6 (.r𝐺) = (.r𝑊)
98a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (.r𝐺) = (.r𝑊))
109oveqd 7366 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(.r𝐺)𝑦) = (𝑥(.r𝑊)𝑦))
113, 6, 10rngidpropd 20039 . . 3 (⊤ → (1r𝐺) = (1r𝑊))
1211mptru 1548 . 2 (1r𝐺) = (1r𝑊)
131, 12eqtri 2765 1 1 = (1r𝑊)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1541  wtru 1542  wcel 2106  cfv 6491  Basecbs 17017  .rcmulr 17068  1rcur 19839  ℤModczlm 20815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-plusg 17080  df-mulr 17081  df-sca 17083  df-vsca 17084  df-0g 17257  df-mgp 19823  df-ur 19840  df-zlm 20819
This theorem is referenced by:  zrhnm  32284
  Copyright terms: Public domain W3C validator