Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zneo | Structured version Visualization version GIF version |
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
Ref | Expression |
---|---|
zneo | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 12468 | . . 3 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | 2cn 12118 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
3 | zcn 12394 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ) |
5 | mulcl 11025 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ) | |
6 | 2, 4, 5 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∈ ℂ) |
7 | zcn 12394 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ) |
9 | mulcl 11025 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ) | |
10 | 2, 8, 9 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℂ) |
11 | 1cnd 11040 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ) | |
12 | 6, 10, 11 | subaddd 11420 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 ↔ ((2 · 𝐵) + 1) = (2 · 𝐴))) |
13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℂ) |
14 | 13, 4, 8 | subdid 11501 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · (𝐴 − 𝐵)) = ((2 · 𝐴) − (2 · 𝐵))) |
15 | 14 | oveq1d 7328 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (((2 · 𝐴) − (2 · 𝐵)) / 2)) |
16 | zsubcl 12432 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
17 | zcn 12394 | . . . . . . . . . 10 ⊢ ((𝐴 − 𝐵) ∈ ℤ → (𝐴 − 𝐵) ∈ ℂ) | |
18 | 16, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℂ) |
19 | 2ne0 12147 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ≠ 0) |
21 | 18, 13, 20 | divcan3d 11826 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴 − 𝐵)) / 2) = (𝐴 − 𝐵)) |
22 | 15, 21 | eqtr3d 2779 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (𝐴 − 𝐵)) |
23 | 22, 16 | eqeltrd 2838 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ) |
24 | oveq1 7320 | . . . . . . 7 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (1 / 2)) | |
25 | 24 | eleq1d 2822 | . . . . . 6 ⊢ (((2 · 𝐴) − (2 · 𝐵)) = 1 → ((((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ ↔ (1 / 2) ∈ ℤ)) |
26 | 23, 25 | syl5ibcom 244 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 → (1 / 2) ∈ ℤ)) |
27 | 12, 26 | sylbird 259 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐵) + 1) = (2 · 𝐴) → (1 / 2) ∈ ℤ)) |
28 | 27 | necon3bd 2955 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (1 / 2) ∈ ℤ → ((2 · 𝐵) + 1) ≠ (2 · 𝐴))) |
29 | 1, 28 | mpi 20 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · 𝐵) + 1) ≠ (2 · 𝐴)) |
30 | 29 | necomd 2997 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 (class class class)co 7313 ℂcc 10939 0cc0 10941 1c1 10942 + caddc 10944 · cmul 10946 − cmin 11275 / cdiv 11702 2c2 12098 ℤcz 12389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-n0 12304 df-z 12390 |
This theorem is referenced by: nneo 12474 zeo2 12477 smndex2dnrinv 18621 ablsimpgfindlem1 19777 |
Copyright terms: Public domain | W3C validator |