Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zneo Structured version   Visualization version   GIF version

Theorem zneo 12057
 Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 12052 . . 3 ¬ (1 / 2) ∈ ℤ
2 2cn 11704 . . . . . . 7 2 ∈ ℂ
3 zcn 11978 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
43adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ)
5 mulcl 10613 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
62, 4, 5sylancr 587 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ∈ ℂ)
7 zcn 11978 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
87adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
9 mulcl 10613 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
102, 8, 9sylancr 587 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℂ)
11 1cnd 10628 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ)
126, 10, 11subaddd 11007 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 ↔ ((2 · 𝐵) + 1) = (2 · 𝐴)))
132a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℂ)
1413, 4, 8subdid 11088 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · (𝐴𝐵)) = ((2 · 𝐴) − (2 · 𝐵)))
1514oveq1d 7166 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴𝐵)) / 2) = (((2 · 𝐴) − (2 · 𝐵)) / 2))
16 zsubcl 12016 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
17 zcn 11978 . . . . . . . . . 10 ((𝐴𝐵) ∈ ℤ → (𝐴𝐵) ∈ ℂ)
1816, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
19 2ne0 11733 . . . . . . . . . 10 2 ≠ 0
2019a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ≠ 0)
2118, 13, 20divcan3d 11413 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · (𝐴𝐵)) / 2) = (𝐴𝐵))
2215, 21eqtr3d 2862 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (𝐴𝐵))
2322, 16eqeltrd 2917 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ)
24 oveq1 7158 . . . . . . 7 (((2 · 𝐴) − (2 · 𝐵)) = 1 → (((2 · 𝐴) − (2 · 𝐵)) / 2) = (1 / 2))
2524eleq1d 2901 . . . . . 6 (((2 · 𝐴) − (2 · 𝐵)) = 1 → ((((2 · 𝐴) − (2 · 𝐵)) / 2) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
2623, 25syl5ibcom 246 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐴) − (2 · 𝐵)) = 1 → (1 / 2) ∈ ℤ))
2712, 26sylbird 261 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((2 · 𝐵) + 1) = (2 · 𝐴) → (1 / 2) ∈ ℤ))
2827necon3bd 3034 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (1 / 2) ∈ ℤ → ((2 · 𝐵) + 1) ≠ (2 · 𝐴)))
291, 28mpi 20 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 · 𝐵) + 1) ≠ (2 · 𝐴))
3029necomd 3075 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  (class class class)co 7151  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   − cmin 10862   / cdiv 11289  2c2 11684  ℤcz 11973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974 This theorem is referenced by:  nneo  12058  zeo2  12061  ablsimpgfindlem1  19151
 Copyright terms: Public domain W3C validator