ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgs GIF version

Theorem 2lgs 15625
Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 15538) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.)
Assertion
Ref Expression
2lgs (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))

Proof of Theorem 2lgs
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prm2orodd 12492 . 2 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
2 2lgslem4 15624 . . . . . 6 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
32a1i 9 . . . . 5 (𝑃 = 2 → ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}))
4 oveq2 5959 . . . . . 6 (𝑃 = 2 → (2 /L 𝑃) = (2 /L 2))
54eqeq1d 2215 . . . . 5 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (2 /L 2) = 1))
6 oveq1 5958 . . . . . 6 (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8))
76eleq1d 2275 . . . . 5 (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8) ∈ {1, 7}))
83, 5, 73bitr4d 220 . . . 4 (𝑃 = 2 → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
98a1d 22 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
10 2prm 12493 . . . . . . . . . 10 2 ∈ ℙ
11 prmnn 12476 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 dvdsprime 12488 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
1310, 11, 12sylancr 414 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1)))
14 z2even 12269 . . . . . . . . . . . . 13 2 ∥ 2
15 breq2 4051 . . . . . . . . . . . . 13 (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2))
1614, 15mpbiri 168 . . . . . . . . . . . 12 (𝑃 = 2 → 2 ∥ 𝑃)
1716a1d 22 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
18 eleq1 2269 . . . . . . . . . . . 12 (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈ ℙ))
19 1nprm 12480 . . . . . . . . . . . . 13 ¬ 1 ∈ ℙ
2019pm2.21i 647 . . . . . . . . . . . 12 (1 ∈ ℙ → 2 ∥ 𝑃)
2118, 20biimtrdi 163 . . . . . . . . . . 11 (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2217, 21jaoi 718 . . . . . . . . . 10 ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃))
2322com12 30 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃))
2413, 23sylbid 150 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥ 𝑃))
2524con3dimp 636 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∥ 2)
26 2z 9407 . . . . . . 7 2 ∈ ℤ
2725, 26jctil 312 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2))
28 2lgslem1 15612 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2928eqcomd 2212 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}))
30 nnoddn2prmb 12629 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃))
3130biimpri 133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2}))
32313ad2ant1 1021 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖ {2}))
33 eqid 2206 . . . . . . . 8 ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2)
34 eqid 2206 . . . . . . . 8 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2))))
35 eqid 2206 . . . . . . . 8 (⌊‘(𝑃 / 4)) = (⌊‘(𝑃 / 4))
36 eqid 2206 . . . . . . . 8 (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
3732, 33, 34, 35, 36gausslemma2d 15590 . . . . . . 7 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
3837eqeq1d 2215 . . . . . 6 (((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) ∧ (2 ∈ ℤ ∧ ¬ 𝑃 ∥ 2) ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
3927, 29, 38mpd3an23 1352 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1))
40362lgslem2 15613 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ)
41 m1exp1 12256 . . . . . 6 ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
4240, 41syl 14 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((-1↑(((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))))
43 2nn 9205 . . . . . . 7 2 ∈ ℕ
44 dvdsval3 12146 . . . . . . 7 ((2 ∈ ℕ ∧ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
4543, 40, 44sylancr 414 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0))
46362lgslem3 15622 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4711, 46sylan 283 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
4847eqeq1d 2215 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0))
49 prmz 12477 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
50 8nn 9211 . . . . . . . . . . . . . . . 16 8 ∈ ℕ
5150a1i 9 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 8 ∈ ℕ)
5249, 51zmodcld 10497 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (𝑃 mod 8) ∈ ℕ0)
5352nn0zd 9500 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 mod 8) ∈ ℤ)
54 1z 9405 . . . . . . . . . . . . 13 1 ∈ ℤ
55 zdceq 9455 . . . . . . . . . . . . 13 (((𝑃 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑃 mod 8) = 1)
5653, 54, 55sylancl 413 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → DECID (𝑃 mod 8) = 1)
57 7nn 9210 . . . . . . . . . . . . . 14 7 ∈ ℕ
5857nnzi 9400 . . . . . . . . . . . . 13 7 ∈ ℤ
59 zdceq 9455 . . . . . . . . . . . . 13 (((𝑃 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝑃 mod 8) = 7)
6053, 58, 59sylancl 413 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → DECID (𝑃 mod 8) = 7)
61 dcor 938 . . . . . . . . . . . 12 (DECID (𝑃 mod 8) = 1 → (DECID (𝑃 mod 8) = 7 → DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)))
6256, 60, 61sylc 62 . . . . . . . . . . 11 (𝑃 ∈ ℙ → DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))
63 elprg 3654 . . . . . . . . . . . . 13 ((𝑃 mod 8) ∈ ℕ0 → ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)))
6452, 63syl 14 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)))
6564dcbid 840 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (DECID (𝑃 mod 8) ∈ {1, 7} ↔ DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)))
6662, 65mpbird 167 . . . . . . . . . 10 (𝑃 ∈ ℙ → DECID (𝑃 mod 8) ∈ {1, 7})
67 exmiddc 838 . . . . . . . . . 10 (DECID (𝑃 mod 8) ∈ {1, 7} → ((𝑃 mod 8) ∈ {1, 7} ∨ ¬ (𝑃 mod 8) ∈ {1, 7}))
6866, 67syl 14 . . . . . . . . 9 (𝑃 ∈ ℙ → ((𝑃 mod 8) ∈ {1, 7} ∨ ¬ (𝑃 mod 8) ∈ {1, 7}))
69 iffalse 3580 . . . . . . . . . . . 12 (¬ (𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
7069eqeq1d 2215 . . . . . . . . . . 11 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ 1 = 0))
71 1ne0 9111 . . . . . . . . . . . 12 1 ≠ 0
72 eqneqall 2387 . . . . . . . . . . . 12 (1 = 0 → (1 ≠ 0 → (𝑃 mod 8) ∈ {1, 7}))
7371, 72mpi 15 . . . . . . . . . . 11 (1 = 0 → (𝑃 mod 8) ∈ {1, 7})
7470, 73biimtrdi 163 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
7574jao1i 798 . . . . . . . . 9 (((𝑃 mod 8) ∈ {1, 7} ∨ ¬ (𝑃 mod 8) ∈ {1, 7}) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
7668, 75syl 14 . . . . . . . 8 (𝑃 ∈ ℙ → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 → (𝑃 mod 8) ∈ {1, 7}))
77 iftrue 3577 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
7876, 77impbid1 142 . . . . . . 7 (𝑃 ∈ ℙ → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
7978adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0 ↔ (𝑃 mod 8) ∈ {1, 7}))
8045, 48, 793bitrd 214 . . . . 5 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (2 ∥ (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7}))
8139, 42, 803bitrd 214 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
8281expcom 116 . . 3 (¬ 2 ∥ 𝑃 → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
839, 82jaoi 718 . 2 ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})))
841, 83mpcom 36 1 (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  wrex 2486  {crab 2489  cdif 3164  ifcif 3572  {csn 3634  {cpr 3635   class class class wbr 4047  cmpt 4109  cfv 5276  (class class class)co 5951  0cc0 7932  1c1 7933   · cmul 7937   < clt 8114  cmin 8250  -cneg 8251   / cdiv 8752  cn 9043  2c2 9094  4c4 9096  7c7 9099  8c8 9100  0cn0 9302  cz 9379  ...cfz 10137  cfl 10418   mod cmo 10474  cexp 10690  chash 10927  cdvds 12142  cprime 12473   /L clgs 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-ioo 10021  df-ico 10023  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-prm 12474  df-phi 12577  df-pc 12652  df-lgs 15519
This theorem is referenced by:  2lgsoddprm  15634
  Copyright terms: Public domain W3C validator