Step | Hyp | Ref
| Expression |
1 | | prm2orodd 12267 |
. 2
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) |
2 | | 2lgslem4 15251 |
. . . . . 6
⊢ ((2
/L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
3 | 2 | a1i 9 |
. . . . 5
⊢ (𝑃 = 2 → ((2
/L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})) |
4 | | oveq2 5927 |
. . . . . 6
⊢ (𝑃 = 2 → (2
/L 𝑃) =
(2 /L 2)) |
5 | 4 | eqeq1d 2202 |
. . . . 5
⊢ (𝑃 = 2 → ((2
/L 𝑃) = 1
↔ (2 /L 2) = 1)) |
6 | | oveq1 5926 |
. . . . . 6
⊢ (𝑃 = 2 → (𝑃 mod 8) = (2 mod 8)) |
7 | 6 | eleq1d 2262 |
. . . . 5
⊢ (𝑃 = 2 → ((𝑃 mod 8) ∈ {1, 7} ↔ (2 mod 8)
∈ {1, 7})) |
8 | 3, 5, 7 | 3bitr4d 220 |
. . . 4
⊢ (𝑃 = 2 → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7})) |
9 | 8 | a1d 22 |
. . 3
⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7}))) |
10 | | 2prm 12268 |
. . . . . . . . . 10
⊢ 2 ∈
ℙ |
11 | | prmnn 12251 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
12 | | dvdsprime 12263 |
. . . . . . . . . 10
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℕ) → (𝑃
∥ 2 ↔ (𝑃 = 2
∨ 𝑃 =
1))) |
13 | 10, 11, 12 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 2 ↔ (𝑃 = 2 ∨ 𝑃 = 1))) |
14 | | z2even 12058 |
. . . . . . . . . . . . 13
⊢ 2 ∥
2 |
15 | | breq2 4034 |
. . . . . . . . . . . . 13
⊢ (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥
2)) |
16 | 14, 15 | mpbiri 168 |
. . . . . . . . . . . 12
⊢ (𝑃 = 2 → 2 ∥ 𝑃) |
17 | 16 | a1d 22 |
. . . . . . . . . . 11
⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → 2 ∥ 𝑃)) |
18 | | eleq1 2256 |
. . . . . . . . . . . 12
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ ↔ 1 ∈
ℙ)) |
19 | | 1nprm 12255 |
. . . . . . . . . . . . 13
⊢ ¬ 1
∈ ℙ |
20 | 19 | pm2.21i 647 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℙ → 2 ∥ 𝑃) |
21 | 18, 20 | biimtrdi 163 |
. . . . . . . . . . 11
⊢ (𝑃 = 1 → (𝑃 ∈ ℙ → 2 ∥ 𝑃)) |
22 | 17, 21 | jaoi 717 |
. . . . . . . . . 10
⊢ ((𝑃 = 2 ∨ 𝑃 = 1) → (𝑃 ∈ ℙ → 2 ∥ 𝑃)) |
23 | 22 | com12 30 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → ((𝑃 = 2 ∨ 𝑃 = 1) → 2 ∥ 𝑃)) |
24 | 13, 23 | sylbid 150 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 2 → 2 ∥
𝑃)) |
25 | 24 | con3dimp 636 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → ¬
𝑃 ∥
2) |
26 | | 2z 9348 |
. . . . . . 7
⊢ 2 ∈
ℤ |
27 | 25, 26 | jctil 312 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → (2 ∈
ℤ ∧ ¬ 𝑃
∥ 2)) |
28 | | 2lgslem1 15239 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) →
(♯‘{𝑥 ∈
ℤ ∣ ∃𝑖
∈ (1...((𝑃 − 1)
/ 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4)))) |
29 | 28 | eqcomd 2199 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → (((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4))) =
(♯‘{𝑥 ∈
ℤ ∣ ∃𝑖
∈ (1...((𝑃 − 1)
/ 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) |
30 | | nnoddn2prmb 12403 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ ¬ 2 ∥ 𝑃)) |
31 | 30 | biimpri 133 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → 𝑃 ∈ (ℙ ∖
{2})) |
32 | 31 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) ∧ (2 ∈
ℤ ∧ ¬ 𝑃
∥ 2) ∧ (((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → 𝑃 ∈ (ℙ ∖
{2})) |
33 | | eqid 2193 |
. . . . . . . 8
⊢ ((𝑃 − 1) / 2) = ((𝑃 − 1) /
2) |
34 | | eqid 2193 |
. . . . . . . 8
⊢ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ if((𝑦 · 2) < (𝑃 / 2), (𝑦 · 2), (𝑃 − (𝑦 · 2)))) |
35 | | eqid 2193 |
. . . . . . . 8
⊢
(⌊‘(𝑃 /
4)) = (⌊‘(𝑃 /
4)) |
36 | | eqid 2193 |
. . . . . . . 8
⊢ (((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4))) =
(((𝑃 − 1) / 2)
− (⌊‘(𝑃 /
4))) |
37 | 32, 33, 34, 35, 36 | gausslemma2d 15217 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) ∧ (2 ∈
ℤ ∧ ¬ 𝑃
∥ 2) ∧ (((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → (2 /L 𝑃) = (-1↑(((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))))) |
38 | 37 | eqeq1d 2202 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) ∧ (2 ∈
ℤ ∧ ¬ 𝑃
∥ 2) ∧ (((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))})) → ((2 /L 𝑃) = 1 ↔ (-1↑(((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))) =
1)) |
39 | 27, 29, 38 | mpd3an23 1350 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → ((2
/L 𝑃) = 1
↔ (-1↑(((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4)))) = 1)) |
40 | 36 | 2lgslem2 15240 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → (((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))
∈ ℤ) |
41 | | m1exp1 12045 |
. . . . . 6
⊢ ((((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))
∈ ℤ → ((-1↑(((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))) =
1 ↔ 2 ∥ (((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4))))) |
42 | 40, 41 | syl 14 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) →
((-1↑(((𝑃 − 1) /
2) − (⌊‘(𝑃 / 4)))) = 1 ↔ 2 ∥ (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))))) |
43 | | 2nn 9146 |
. . . . . . 7
⊢ 2 ∈
ℕ |
44 | | dvdsval3 11937 |
. . . . . . 7
⊢ ((2
∈ ℕ ∧ (((𝑃
− 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) → (2 ∥
(((𝑃 − 1) / 2)
− (⌊‘(𝑃 /
4))) ↔ ((((𝑃 −
1) / 2) − (⌊‘(𝑃 / 4))) mod 2) = 0)) |
45 | 43, 40, 44 | sylancr 414 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → (2
∥ (((𝑃 − 1) /
2) − (⌊‘(𝑃 / 4))) ↔ ((((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))
mod 2) = 0)) |
46 | 36 | 2lgslem3 15249 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → ((((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))
mod 2) = if((𝑃 mod 8)
∈ {1, 7}, 0, 1)) |
47 | 11, 46 | sylan 283 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → ((((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4)))
mod 2) = if((𝑃 mod 8)
∈ {1, 7}, 0, 1)) |
48 | 47 | eqeq1d 2202 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) →
(((((𝑃 − 1) / 2)
− (⌊‘(𝑃 /
4))) mod 2) = 0 ↔ if((𝑃 mod 8) ∈ {1, 7}, 0, 1) =
0)) |
49 | | prmz 12252 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
50 | | 8nn 9152 |
. . . . . . . . . . . . . . . 16
⊢ 8 ∈
ℕ |
51 | 50 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 8 ∈
ℕ) |
52 | 49, 51 | zmodcld 10419 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → (𝑃 mod 8) ∈
ℕ0) |
53 | 52 | nn0zd 9440 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → (𝑃 mod 8) ∈
ℤ) |
54 | | 1z 9346 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
55 | | zdceq 9395 |
. . . . . . . . . . . . 13
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝑃 mod 8) = 1) |
56 | 53, 54, 55 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ →
DECID (𝑃 mod
8) = 1) |
57 | | 7nn 9151 |
. . . . . . . . . . . . . 14
⊢ 7 ∈
ℕ |
58 | 57 | nnzi 9341 |
. . . . . . . . . . . . 13
⊢ 7 ∈
ℤ |
59 | | zdceq 9395 |
. . . . . . . . . . . . 13
⊢ (((𝑃 mod 8) ∈ ℤ ∧ 7
∈ ℤ) → DECID (𝑃 mod 8) = 7) |
60 | 53, 58, 59 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ →
DECID (𝑃 mod
8) = 7) |
61 | | dcor 937 |
. . . . . . . . . . . 12
⊢
(DECID (𝑃 mod 8) = 1 → (DECID
(𝑃 mod 8) = 7 →
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7))) |
62 | 56, 60, 61 | sylc 62 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ →
DECID ((𝑃
mod 8) = 1 ∨ (𝑃 mod 8) =
7)) |
63 | | elprg 3639 |
. . . . . . . . . . . . 13
⊢ ((𝑃 mod 8) ∈
ℕ0 → ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))) |
64 | 52, 63 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 8) ∈ {1, 7} ↔
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))) |
65 | 64 | dcbid 839 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ →
(DECID (𝑃
mod 8) ∈ {1, 7} ↔ DECID ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))) |
66 | 62, 65 | mpbird 167 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ →
DECID (𝑃 mod
8) ∈ {1, 7}) |
67 | | exmiddc 837 |
. . . . . . . . . 10
⊢
(DECID (𝑃 mod 8) ∈ {1, 7} → ((𝑃 mod 8) ∈ {1, 7} ∨ ¬
(𝑃 mod 8) ∈ {1,
7})) |
68 | 66, 67 | syl 14 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 8) ∈ {1, 7} ∨ ¬
(𝑃 mod 8) ∈ {1,
7})) |
69 | | iffalse 3566 |
. . . . . . . . . . . 12
⊢ (¬
(𝑃 mod 8) ∈ {1, 7}
→ if((𝑃 mod 8) ∈
{1, 7}, 0, 1) = 1) |
70 | 69 | eqeq1d 2202 |
. . . . . . . . . . 11
⊢ (¬
(𝑃 mod 8) ∈ {1, 7}
→ (if((𝑃 mod 8) ∈
{1, 7}, 0, 1) = 0 ↔ 1 = 0)) |
71 | | 1ne0 9052 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
72 | | eqneqall 2374 |
. . . . . . . . . . . 12
⊢ (1 = 0
→ (1 ≠ 0 → (𝑃
mod 8) ∈ {1, 7})) |
73 | 71, 72 | mpi 15 |
. . . . . . . . . . 11
⊢ (1 = 0
→ (𝑃 mod 8) ∈ {1,
7}) |
74 | 70, 73 | biimtrdi 163 |
. . . . . . . . . 10
⊢ (¬
(𝑃 mod 8) ∈ {1, 7}
→ (if((𝑃 mod 8) ∈
{1, 7}, 0, 1) = 0 → (𝑃
mod 8) ∈ {1, 7})) |
75 | 74 | jao1i 797 |
. . . . . . . . 9
⊢ (((𝑃 mod 8) ∈ {1, 7} ∨ ¬
(𝑃 mod 8) ∈ {1, 7})
→ (if((𝑃 mod 8) ∈
{1, 7}, 0, 1) = 0 → (𝑃
mod 8) ∈ {1, 7})) |
76 | 68, 75 | syl 14 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ →
(if((𝑃 mod 8) ∈ {1,
7}, 0, 1) = 0 → (𝑃 mod
8) ∈ {1, 7})) |
77 | | iftrue 3563 |
. . . . . . . 8
⊢ ((𝑃 mod 8) ∈ {1, 7} →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 0) |
78 | 76, 77 | impbid1 142 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ →
(if((𝑃 mod 8) ∈ {1,
7}, 0, 1) = 0 ↔ (𝑃 mod
8) ∈ {1, 7})) |
79 | 78 | adantr 276 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) →
(if((𝑃 mod 8) ∈ {1,
7}, 0, 1) = 0 ↔ (𝑃 mod
8) ∈ {1, 7})) |
80 | 45, 48, 79 | 3bitrd 214 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → (2
∥ (((𝑃 − 1) /
2) − (⌊‘(𝑃 / 4))) ↔ (𝑃 mod 8) ∈ {1, 7})) |
81 | 39, 42, 80 | 3bitrd 214 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ ¬ 2
∥ 𝑃) → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7})) |
82 | 81 | expcom 116 |
. . 3
⊢ (¬ 2
∥ 𝑃 → (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7}))) |
83 | 9, 82 | jaoi 717 |
. 2
⊢ ((𝑃 = 2 ∨ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7}))) |
84 | 1, 83 | mpcom 36 |
1
⊢ (𝑃 ∈ ℙ → ((2
/L 𝑃) = 1
↔ (𝑃 mod 8) ∈ {1,
7})) |