| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3a1 | GIF version | ||
| Description: Lemma 1 for 2lgslem3 15622. (Contributed by AV, 15-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
| Ref | Expression |
|---|---|
| 2lgslem3a1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 9309 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 2 | 8nn 9211 | . . . . 5 ⊢ 8 ∈ ℕ | |
| 3 | nnq 9761 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℚ) | |
| 4 | 2, 3 | mp1i 10 | . . . 4 ⊢ (𝑃 ∈ ℕ → 8 ∈ ℚ) |
| 5 | 8pos 9146 | . . . . 5 ⊢ 0 < 8 | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 < 8) |
| 7 | modqmuladdnn0 10520 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) | |
| 8 | 1, 4, 6, 7 | syl3anc 1250 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) |
| 9 | simpr 110 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 10 | nn0cn 9312 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
| 11 | 8cn 9129 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
| 12 | 11 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
| 13 | 10, 12 | mulcomd 8101 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
| 14 | 13 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
| 15 | 14 | oveq1d 5966 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1)) |
| 16 | 15 | eqeq2d 2218 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1))) |
| 17 | 16 | biimpa 296 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1)) |
| 18 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
| 19 | 18 | 2lgslem3a 15614 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘)) |
| 20 | 9, 17, 19 | syl2an2r 595 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘)) |
| 21 | oveq1 5958 | . . . . . 6 ⊢ (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2)) | |
| 22 | 2cnd 9116 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℂ) | |
| 23 | 22, 10 | mulcomd 8101 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2)) |
| 24 | 23 | oveq1d 5966 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2)) |
| 25 | nn0z 9399 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 26 | 2nn 9205 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 27 | nnq 9761 | . . . . . . . . 9 ⊢ (2 ∈ ℕ → 2 ∈ ℚ) | |
| 28 | 26, 27 | mp1i 10 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℚ) |
| 29 | 2pos 9134 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 30 | 29 | a1i 9 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 0 < 2) |
| 31 | mulqmod0 10482 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ 2 ∈ ℚ ∧ 0 < 2) → ((𝑘 · 2) mod 2) = 0) | |
| 32 | 25, 28, 30, 31 | syl3anc 1250 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0) |
| 33 | 24, 32 | eqtrd 2239 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0) |
| 34 | 21, 33 | sylan9eqr 2261 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0) |
| 35 | 9, 20, 34 | syl2an2r 595 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0) |
| 36 | 35 | rexlimdva2 2627 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0)) |
| 37 | 8, 36 | syld 45 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0)) |
| 38 | 37 | imp 124 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 < clt 8114 − cmin 8250 / cdiv 8752 ℕcn 9043 2c2 9094 4c4 9096 8c8 9100 ℕ0cn0 9302 ℤcz 9379 ℚcq 9747 ⌊cfl 10418 mod cmo 10474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-n0 9303 df-z 9380 df-q 9748 df-rp 9783 df-ico 10023 df-fl 10420 df-mod 10475 |
| This theorem is referenced by: 2lgslem3 15622 |
| Copyright terms: Public domain | W3C validator |