ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3a1 GIF version

Theorem 2lgslem3a1 15422
Description: Lemma 1 for 2lgslem3 15426. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3a1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9273 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 9175 . . . . 5 8 ∈ ℕ
3 nnq 9724 . . . . 5 (8 ∈ ℕ → 8 ∈ ℚ)
42, 3mp1i 10 . . . 4 (𝑃 ∈ ℕ → 8 ∈ ℚ)
5 8pos 9110 . . . . 5 0 < 8
65a1i 9 . . . 4 (𝑃 ∈ ℕ → 0 < 8)
7 modqmuladdnn0 10477 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
81, 4, 6, 7syl3anc 1249 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
9 simpr 110 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
10 nn0cn 9276 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
11 8cn 9093 . . . . . . . . . . . 12 8 ∈ ℂ
1211a1i 9 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
1310, 12mulcomd 8065 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1413adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 5940 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1))
1615eqeq2d 2208 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1)))
1716biimpa 296 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1))
18 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
19182lgslem3a 15418 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘))
209, 17, 19syl2an2r 595 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘))
21 oveq1 5932 . . . . . 6 (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2))
22 2cnd 9080 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
2322, 10mulcomd 8065 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2))
2423oveq1d 5940 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2))
25 nn0z 9363 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
26 2nn 9169 . . . . . . . . 9 2 ∈ ℕ
27 nnq 9724 . . . . . . . . 9 (2 ∈ ℕ → 2 ∈ ℚ)
2826, 27mp1i 10 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℚ)
29 2pos 9098 . . . . . . . . 9 0 < 2
3029a1i 9 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 < 2)
31 mulqmod0 10439 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ∈ ℚ ∧ 0 < 2) → ((𝑘 · 2) mod 2) = 0)
3225, 28, 30, 31syl3anc 1249 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0)
3324, 32eqtrd 2229 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0)
3421, 33sylan9eqr 2251 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0)
359, 20, 34syl2an2r 595 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0)
3635rexlimdva2 2617 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0))
378, 36syld 45 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0))
3837imp 124 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  4c4 9060  8c8 9064  0cn0 9266  cz 9343  cq 9710  cfl 10375   mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-ico 9986  df-fl 10377  df-mod 10432
This theorem is referenced by:  2lgslem3  15426
  Copyright terms: Public domain W3C validator