![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2lgslem3a1 | GIF version |
Description: Lemma 1 for 2lgslem3 15249. (Contributed by AV, 15-Jul-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem3a1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 9250 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
2 | 8nn 9152 | . . . . 5 ⊢ 8 ∈ ℕ | |
3 | nnq 9701 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℚ) | |
4 | 2, 3 | mp1i 10 | . . . 4 ⊢ (𝑃 ∈ ℕ → 8 ∈ ℚ) |
5 | 8pos 9087 | . . . . 5 ⊢ 0 < 8 | |
6 | 5 | a1i 9 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 < 8) |
7 | modqmuladdnn0 10442 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) | |
8 | 1, 4, 6, 7 | syl3anc 1249 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) |
9 | simpr 110 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
10 | nn0cn 9253 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
11 | 8cn 9070 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
12 | 11 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
13 | 10, 12 | mulcomd 8043 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
14 | 13 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
15 | 14 | oveq1d 5934 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1)) |
16 | 15 | eqeq2d 2205 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1))) |
17 | 16 | biimpa 296 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1)) |
18 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
19 | 18 | 2lgslem3a 15241 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘)) |
20 | 9, 17, 19 | syl2an2r 595 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘)) |
21 | oveq1 5926 | . . . . . 6 ⊢ (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2)) | |
22 | 2cnd 9057 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℂ) | |
23 | 22, 10 | mulcomd 8043 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2)) |
24 | 23 | oveq1d 5934 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2)) |
25 | nn0z 9340 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
26 | 2nn 9146 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
27 | nnq 9701 | . . . . . . . . 9 ⊢ (2 ∈ ℕ → 2 ∈ ℚ) | |
28 | 26, 27 | mp1i 10 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℚ) |
29 | 2pos 9075 | . . . . . . . . 9 ⊢ 0 < 2 | |
30 | 29 | a1i 9 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 0 < 2) |
31 | mulqmod0 10404 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ 2 ∈ ℚ ∧ 0 < 2) → ((𝑘 · 2) mod 2) = 0) | |
32 | 25, 28, 30, 31 | syl3anc 1249 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0) |
33 | 24, 32 | eqtrd 2226 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0) |
34 | 21, 33 | sylan9eqr 2248 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0) |
35 | 9, 20, 34 | syl2an2r 595 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0) |
36 | 35 | rexlimdva2 2614 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0)) |
37 | 8, 36 | syld 45 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0)) |
38 | 37 | imp 124 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 < clt 8056 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 4c4 9037 8c8 9041 ℕ0cn0 9243 ℤcz 9320 ℚcq 9687 ⌊cfl 10340 mod cmo 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-ico 9963 df-fl 10342 df-mod 10397 |
This theorem is referenced by: 2lgslem3 15249 |
Copyright terms: Public domain | W3C validator |