ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3a1 GIF version

Theorem 2lgslem3a1 15245
Description: Lemma 1 for 2lgslem3 15249. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3a1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3a1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9250 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 9152 . . . . 5 8 ∈ ℕ
3 nnq 9701 . . . . 5 (8 ∈ ℕ → 8 ∈ ℚ)
42, 3mp1i 10 . . . 4 (𝑃 ∈ ℕ → 8 ∈ ℚ)
5 8pos 9087 . . . . 5 0 < 8
65a1i 9 . . . 4 (𝑃 ∈ ℕ → 0 < 8)
7 modqmuladdnn0 10442 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
81, 4, 6, 7syl3anc 1249 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1)))
9 simpr 110 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
10 nn0cn 9253 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
11 8cn 9070 . . . . . . . . . . . 12 8 ∈ ℂ
1211a1i 9 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
1310, 12mulcomd 8043 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1413adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 5934 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1))
1615eqeq2d 2205 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1)))
1716biimpa 296 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1))
18 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
19182lgslem3a 15241 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘))
209, 17, 19syl2an2r 595 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘))
21 oveq1 5926 . . . . . 6 (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2))
22 2cnd 9057 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
2322, 10mulcomd 8043 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2))
2423oveq1d 5934 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2))
25 nn0z 9340 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
26 2nn 9146 . . . . . . . . 9 2 ∈ ℕ
27 nnq 9701 . . . . . . . . 9 (2 ∈ ℕ → 2 ∈ ℚ)
2826, 27mp1i 10 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℚ)
29 2pos 9075 . . . . . . . . 9 0 < 2
3029a1i 9 . . . . . . . 8 (𝑘 ∈ ℕ0 → 0 < 2)
31 mulqmod0 10404 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 2 ∈ ℚ ∧ 0 < 2) → ((𝑘 · 2) mod 2) = 0)
3225, 28, 30, 31syl3anc 1249 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0)
3324, 32eqtrd 2226 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0)
3421, 33sylan9eqr 2248 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0)
359, 20, 34syl2an2r 595 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0)
3635rexlimdva2 2614 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0))
378, 36syld 45 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0))
3837imp 124 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cmin 8192   / cdiv 8693  cn 8984  2c2 9035  4c4 9037  8c8 9041  0cn0 9243  cz 9320  cq 9687  cfl 10340   mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-ico 9963  df-fl 10342  df-mod 10397
This theorem is referenced by:  2lgslem3  15249
  Copyright terms: Public domain W3C validator