| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3a1 | GIF version | ||
| Description: Lemma 1 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
| Ref | Expression |
|---|---|
| 2lgslem3a1 | ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 9384 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 2 | 8nn 9286 | . . . . 5 ⊢ 8 ∈ ℕ | |
| 3 | nnq 9836 | . . . . 5 ⊢ (8 ∈ ℕ → 8 ∈ ℚ) | |
| 4 | 2, 3 | mp1i 10 | . . . 4 ⊢ (𝑃 ∈ ℕ → 8 ∈ ℚ) |
| 5 | 8pos 9221 | . . . . 5 ⊢ 0 < 8 | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 < 8) |
| 7 | modqmuladdnn0 10598 | . . . 4 ⊢ ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) | |
| 8 | 1, 4, 6, 7 | syl3anc 1271 | . . 3 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1))) |
| 9 | simpr 110 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 10 | nn0cn 9387 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ) | |
| 11 | 8cn 9204 | . . . . . . . . . . . 12 ⊢ 8 ∈ ℂ | |
| 12 | 11 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → 8 ∈ ℂ) |
| 13 | 10, 12 | mulcomd 8176 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘)) |
| 14 | 13 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘)) |
| 15 | 14 | oveq1d 6022 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 1) = ((8 · 𝑘) + 1)) |
| 16 | 15 | eqeq2d 2241 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 1) ↔ 𝑃 = ((8 · 𝑘) + 1))) |
| 17 | 16 | biimpa 296 | . . . . . 6 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑃 = ((8 · 𝑘) + 1)) |
| 18 | 2lgslem2.n | . . . . . . 7 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
| 19 | 18 | 2lgslem3a 15780 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝑘) + 1)) → 𝑁 = (2 · 𝑘)) |
| 20 | 9, 17, 19 | syl2an2r 597 | . . . . 5 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → 𝑁 = (2 · 𝑘)) |
| 21 | oveq1 6014 | . . . . . 6 ⊢ (𝑁 = (2 · 𝑘) → (𝑁 mod 2) = ((2 · 𝑘) mod 2)) | |
| 22 | 2cnd 9191 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℂ) | |
| 23 | 22, 10 | mulcomd 8176 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (2 · 𝑘) = (𝑘 · 2)) |
| 24 | 23 | oveq1d 6022 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = ((𝑘 · 2) mod 2)) |
| 25 | nn0z 9474 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 26 | 2nn 9280 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 27 | nnq 9836 | . . . . . . . . 9 ⊢ (2 ∈ ℕ → 2 ∈ ℚ) | |
| 28 | 26, 27 | mp1i 10 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 2 ∈ ℚ) |
| 29 | 2pos 9209 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 30 | 29 | a1i 9 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 0 < 2) |
| 31 | mulqmod0 10560 | . . . . . . . 8 ⊢ ((𝑘 ∈ ℤ ∧ 2 ∈ ℚ ∧ 0 < 2) → ((𝑘 · 2) mod 2) = 0) | |
| 32 | 25, 28, 30, 31 | syl3anc 1271 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 · 2) mod 2) = 0) |
| 33 | 24, 32 | eqtrd 2262 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → ((2 · 𝑘) mod 2) = 0) |
| 34 | 21, 33 | sylan9eqr 2284 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ 𝑁 = (2 · 𝑘)) → (𝑁 mod 2) = 0) |
| 35 | 9, 20, 34 | syl2an2r 597 | . . . 4 ⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 1)) → (𝑁 mod 2) = 0) |
| 36 | 35 | rexlimdva2 2651 | . . 3 ⊢ (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 1) → (𝑁 mod 2) = 0)) |
| 37 | 8, 36 | syld 45 | . 2 ⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 1 → (𝑁 mod 2) = 0)) |
| 38 | 37 | imp 124 | 1 ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 < clt 8189 − cmin 8325 / cdiv 8827 ℕcn 9118 2c2 9169 4c4 9171 8c8 9175 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 ⌊cfl 10496 mod cmo 10552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-ico 10098 df-fl 10498 df-mod 10553 |
| This theorem is referenced by: 2lgslem3 15788 |
| Copyright terms: Public domain | W3C validator |