ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b1 GIF version

Theorem 2lgslem3b1 15742
Description: Lemma 2 for 2lgslem3 15745. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3b1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3b1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9344 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 9246 . . . . 5 8 ∈ ℕ
3 nnq 9796 . . . . 5 (8 ∈ ℕ → 8 ∈ ℚ)
42, 3mp1i 10 . . . 4 (𝑃 ∈ ℕ → 8 ∈ ℚ)
5 8pos 9181 . . . . 5 0 < 8
65a1i 9 . . . 4 (𝑃 ∈ ℕ → 0 < 8)
7 modqmuladdnn0 10557 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
81, 4, 6, 7syl3anc 1252 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3)))
9 simpr 110 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
10 nn0cn 9347 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
11 8cn 9164 . . . . . . . . . . . 12 8 ∈ ℂ
1211a1i 9 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
1310, 12mulcomd 8136 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1413adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 5989 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 3) = ((8 · 𝑘) + 3))
1615eqeq2d 2221 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 3) ↔ 𝑃 = ((8 · 𝑘) + 3)))
1716biimpa 296 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑃 = ((8 · 𝑘) + 3))
18 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
19182lgslem3b 15738 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
209, 17, 19syl2an2r 597 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → 𝑁 = ((2 · 𝑘) + 1))
21 oveq1 5981 . . . . . 6 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
22 nn0z 9434 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
23 eqidd 2210 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
24 2tp1odd 12361 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2522, 23, 24syl2anc 411 . . . . . . 7 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
26 2z 9442 . . . . . . . . . . 11 2 ∈ ℤ
2726a1i 9 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2827, 22zmulcld 9543 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2928peano2zd 9540 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
30 mod2eq1n2dvds 12356 . . . . . . . 8 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3129, 30syl 14 . . . . . . 7 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3225, 31mpbird 167 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3321, 32sylan9eqr 2264 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
349, 20, 33syl2an2r 597 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 3)) → (𝑁 mod 2) = 1)
3534rexlimdva2 2631 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 3) → (𝑁 mod 2) = 1))
368, 35syld 45 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 3 → (𝑁 mod 2) = 1))
3736imp 124 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wrex 2489   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cmin 8285   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  4c4 9131  8c8 9135  0cn0 9337  cz 9414  cq 9782  cfl 10455   mod cmo 10511  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ico 10058  df-fz 10173  df-fl 10457  df-mod 10512  df-dvds 12265
This theorem is referenced by:  2lgslem3  15745
  Copyright terms: Public domain W3C validator