| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0e | GIF version | ||
| Description: Auxiliary lemma 5 for gausslemma2d 15320. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0e | ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 2 | 1 | oveq1i 5933 | . 2 ⊢ (𝑀 · 2) = ((⌊‘(𝑃 / 4)) · 2) |
| 3 | gausslemma2dlem0.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 4 | nnoddn2prm 12439 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) | |
| 5 | nnz 9347 | . . . 4 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 6 | 5 | anim1i 340 | . . 3 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃)) |
| 7 | flodddiv4t2lthalf 12106 | . . 3 ⊢ ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) · 2) < (𝑃 / 2)) | |
| 8 | 3, 4, 6, 7 | 4syl 18 | . 2 ⊢ (𝜑 → ((⌊‘(𝑃 / 4)) · 2) < (𝑃 / 2)) |
| 9 | 2, 8 | eqbrtrid 4069 | 1 ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 {csn 3623 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 · cmul 7886 < clt 8063 / cdiv 8701 ℕcn 8992 2c2 9043 4c4 9045 ℤcz 9328 ⌊cfl 10360 ∥ cdvds 11954 ℙcprime 12285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-1o 6475 df-2o 6476 df-er 6593 df-en 6801 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-n0 9252 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-fl 10362 df-seqfrec 10542 df-exp 10633 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-dvds 11955 df-prm 12286 |
| This theorem is referenced by: gausslemma2dlem2 15313 |
| Copyright terms: Public domain | W3C validator |