| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0d | GIF version | ||
| Description: Auxiliary lemma 4 for gausslemma2d 15396. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0d | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.m | . 2 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 2 | gausslemma2dlem0.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 3 | 2 | gausslemma2dlem0a 15376 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | nnzd 9466 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 5 | 4nn 9173 | . . . 4 ⊢ 4 ∈ ℕ | |
| 6 | znq 9717 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ) | |
| 7 | 4, 5, 6 | sylancl 413 | . . 3 ⊢ (𝜑 → (𝑃 / 4) ∈ ℚ) |
| 8 | nnre 9016 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 9 | nnnn0 9275 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 10 | 9 | nn0ge0d 9324 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 11 | 4re 9086 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
| 12 | 4pos 9106 | . . . . . . 7 ⊢ 0 < 4 | |
| 13 | 11, 12 | pm3.2i 272 | . . . . . 6 ⊢ (4 ∈ ℝ ∧ 0 < 4) |
| 14 | 13 | a1i 9 | . . . . 5 ⊢ (𝑃 ∈ ℕ → (4 ∈ ℝ ∧ 0 < 4)) |
| 15 | divge0 8919 | . . . . 5 ⊢ (((𝑃 ∈ ℝ ∧ 0 ≤ 𝑃) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (𝑃 / 4)) | |
| 16 | 8, 10, 14, 15 | syl21anc 1248 | . . . 4 ⊢ (𝑃 ∈ ℕ → 0 ≤ (𝑃 / 4)) |
| 17 | 3, 16 | syl 14 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑃 / 4)) |
| 18 | flqge0nn0 10402 | . . 3 ⊢ (((𝑃 / 4) ∈ ℚ ∧ 0 ≤ (𝑃 / 4)) → (⌊‘(𝑃 / 4)) ∈ ℕ0) | |
| 19 | 7, 17, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → (⌊‘(𝑃 / 4)) ∈ ℕ0) |
| 20 | 1, 19 | eqeltrid 2283 | 1 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 {csn 3623 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7897 0cc0 7898 < clt 8080 ≤ cle 8081 / cdiv 8718 ℕcn 9009 2c2 9060 4c4 9062 ℕ0cn0 9268 ℤcz 9345 ℚcq 9712 ⌊cfl 10377 ℙcprime 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-fl 10379 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-dvds 11972 df-prm 12303 |
| This theorem is referenced by: gausslemma2dlem0h 15383 gausslemma2dlem2 15389 gausslemma2dlem3 15390 gausslemma2dlem4 15391 gausslemma2dlem6 15394 |
| Copyright terms: Public domain | W3C validator |