![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0f | GIF version |
Description: Auxiliary lemma 6 for gausslemma2d 15277. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0f | ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifsn 3749 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
3 | prm23ge5 12409 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
4 | eqneqall 2377 | . . . . . . 7 ⊢ (𝑃 = 2 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
5 | orc 713 | . . . . . . . 8 ⊢ (𝑃 = 3 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
6 | 5 | a1d 22 | . . . . . . 7 ⊢ (𝑃 = 3 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
7 | olc 712 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
8 | 7 | a1d 22 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
9 | 4, 6, 8 | 3jaoi 1314 | . . . . . 6 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
10 | 3, 9 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
11 | 10 | imp 124 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
12 | 2, 11 | sylbi 121 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
13 | fldiv4p1lem1div2 10380 | . . 3 ⊢ ((𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) | |
14 | 1, 12, 13 | 3syl 17 | . 2 ⊢ (𝜑 → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) |
15 | gausslemma2dlem0.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
16 | 15 | oveq1i 5932 | . 2 ⊢ (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1) |
17 | gausslemma2dlem0.h | . 2 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
18 | 14, 16, 17 | 3brtr4g 4067 | 1 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3622 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1c1 7878 + caddc 7880 ≤ cle 8060 − cmin 8195 / cdiv 8696 2c2 9038 3c3 9039 4c4 9040 5c5 9041 ℤ≥cuz 9598 ⌊cfl 10343 ℙcprime 12251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-fz 10081 df-fl 10345 df-seqfrec 10525 df-exp 10616 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-dvds 11937 df-prm 12252 |
This theorem is referenced by: gausslemma2dlem5 15274 |
Copyright terms: Public domain | W3C validator |