ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccat2 GIF version

Theorem swrdccat2 11198
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)

Proof of Theorem swrdccat2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 11123 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 lencl 11070 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
32nn0zd 9563 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
43adantr 276 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℤ)
52adantr 276 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
6 lencl 11070 . . . . . . . 8 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
76adantl 277 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑇) ∈ ℕ0)
85, 7nn0addcld 9422 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
98nn0zd 9563 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
10 swrdclg 11177 . . . . 5 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ ℤ ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
111, 4, 9, 10syl3anc 1271 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
12 wrdfn 11081 . . . 4 (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
1311, 12syl 14 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
14 nn0uz 9753 . . . . . . . . . 10 0 = (ℤ‘0)
152, 14eleqtrdi 2322 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
1615adantr 276 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
173uzidd 9733 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
18 uzaddcl 9777 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1917, 6, 18syl2an 289 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
20 elfzuzb 10211 . . . . . . . 8 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
2116, 19, 20sylanbrc 417 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
22 nn0addcl 9400 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
232, 6, 22syl2an 289 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
2423, 14eleqtrdi 2322 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0))
2523nn0zd 9563 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
2625uzidd 9733 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
27 elfzuzb 10211 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇)))))
2824, 26, 27sylanbrc 417 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
29 ccatlen 11125 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
3029oveq2d 6016 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
3128, 30eleqtrrd 2309 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
32 swrdlen 11179 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
331, 21, 31, 32syl3anc 1271 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
342nn0cnd 9420 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
356nn0cnd 9420 . . . . . . 7 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℂ)
36 pncan2 8349 . . . . . . 7 (((♯‘𝑆) ∈ ℂ ∧ (♯‘𝑇) ∈ ℂ) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3734, 35, 36syl2an 289 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3833, 37eqtrd 2262 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (♯‘𝑇))
3938oveq2d 6016 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) = (0..^(♯‘𝑇)))
4039fneq2d 5411 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) ↔ ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇))))
4113, 40mpbid 147 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇)))
42 wrdfn 11081 . . 3 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
4342adantl 277 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
441, 21, 313jca 1201 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))))
4537oveq2d 6016 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) = (0..^(♯‘𝑇)))
4645eleq2d 2299 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) ↔ 𝑘 ∈ (0..^(♯‘𝑇))))
4746biimpar 297 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))))
48 swrdfv 11180 . . . 4 ((((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) ∧ 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
4944, 47, 48syl2an2r 597 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
50 ccatval3 11129 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
51503expa 1227 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
5249, 51eqtrd 2262 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = (𝑇𝑘))
5341, 43, 52eqfnfvd 5734 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cop 3669   Fn wfn 5312  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998  cmin 8313  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by:  ccatopth  11243
  Copyright terms: Public domain W3C validator