ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatswrd GIF version

Theorem ccatswrd 11156
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015.)
Assertion
Ref Expression
ccatswrd ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))

Proof of Theorem ccatswrd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
2 elfzelz 10177 . . . . . . . 8 (𝑋 ∈ (0...𝑌) → 𝑋 ∈ ℤ)
323ad2ant1 1021 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑋 ∈ ℤ)
43adantl 277 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℤ)
5 elfzel2 10175 . . . . . . . 8 (𝑋 ∈ (0...𝑌) → 𝑌 ∈ ℤ)
653ad2ant1 1021 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ ℤ)
76adantl 277 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
8 swrdclg 11136 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
91, 4, 7, 8syl3anc 1250 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
10 elfzel2 10175 . . . . . . . 8 (𝑌 ∈ (0...𝑍) → 𝑍 ∈ ℤ)
11103ad2ant2 1022 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑍 ∈ ℤ)
1211adantl 277 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ)
13 swrdclg 11136 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑌 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
141, 7, 12, 13syl3anc 1250 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
15 ccatcl 11082 . . . . 5 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
169, 14, 15syl2anc 411 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴)
17 wrdfn 11041 . . . 4 (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) ∈ Word 𝐴 → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
1816, 17syl 14 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))))
19 ccatlen 11084 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
209, 14, 19syl2anc 411 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))
21 simpr1 1006 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑌))
22 simpr2 1007 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...𝑍))
23 simpr3 1008 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ (0...(♯‘𝑆)))
24 fzass4 10214 . . . . . . . . . . 11 ((𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))) ↔ (𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))))
2524biimpri 133 . . . . . . . . . 10 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (𝑌 ∈ (0...(♯‘𝑆)) ∧ 𝑍 ∈ (𝑌...(♯‘𝑆))))
2625simpld 112 . . . . . . . . 9 ((𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → 𝑌 ∈ (0...(♯‘𝑆)))
2722, 23, 26syl2anc 411 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
28 swrdlen 11138 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
291, 21, 27, 28syl3anc 1250 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑌𝑋))
30 swrdlen 11138 . . . . . . . 8 ((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
31303adant3r1 1215 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑍𝑌))
3229, 31oveq12d 5980 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = ((𝑌𝑋) + (𝑍𝑌)))
3322elfzelzd 10178 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℤ)
3433zcnd 9526 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ ℂ)
3521elfzelzd 10178 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℤ)
3635zcnd 9526 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ ℂ)
3723elfzelzd 10178 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℤ)
3837zcnd 9526 . . . . . . 7 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑍 ∈ ℂ)
3934, 36, 38npncan3d 8449 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋) + (𝑍𝑌)) = (𝑍𝑋))
4020, 32, 393eqtrd 2243 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
4140oveq2d 5978 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) = (0..^(𝑍𝑋)))
4241fneq2d 5379 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(♯‘((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋))))
4318, 42mpbid 147 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) Fn (0..^(𝑍𝑋)))
44 swrdclg 11136 . . . . 5 ((𝑆 ∈ Word 𝐴𝑋 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
451, 4, 12, 44syl3anc 1250 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴)
46 wrdfn 11041 . . . 4 ((𝑆 substr ⟨𝑋, 𝑍⟩) ∈ Word 𝐴 → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
4745, 46syl 14 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))))
48 fzass4 10214 . . . . . . . . 9 ((𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)) ↔ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)))
4948biimpri 133 . . . . . . . 8 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → (𝑋 ∈ (0...𝑍) ∧ 𝑌 ∈ (𝑋...𝑍)))
5049simpld 112 . . . . . . 7 ((𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍)) → 𝑋 ∈ (0...𝑍))
5121, 22, 50syl2anc 411 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑍))
52 swrdlen 11138 . . . . . 6 ((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
531, 51, 23, 52syl3anc 1250 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (♯‘(𝑆 substr ⟨𝑋, 𝑍⟩)) = (𝑍𝑋))
5453oveq2d 5978 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) = (0..^(𝑍𝑋)))
5554fneq2d 5379 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑍⟩))) ↔ (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋))))
5647, 55mpbid 147 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑋, 𝑍⟩) Fn (0..^(𝑍𝑋)))
5733, 35zsubcld 9530 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℤ)
5857anim1ci 341 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ))
59 fzospliti 10330 . . . . 5 ((𝑥 ∈ (0..^(𝑍𝑋)) ∧ (𝑌𝑋) ∈ ℤ) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
6058, 59syl 14 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
619adantr 276 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
6214adantr 276 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
6329oveq2d 5978 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (0..^(𝑌𝑋)))
6463eleq2d 2276 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ↔ 𝑥 ∈ (0..^(𝑌𝑋))))
6564biimpar 297 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))))
66 ccatval1 11086 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
6761, 62, 65, 66syl3anc 1250 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥))
68 simpll 527 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑆 ∈ Word 𝐴)
69 simplr1 1042 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑋 ∈ (0...𝑌))
7027adantr 276 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑌 ∈ (0...(♯‘𝑆)))
71 simpr 110 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → 𝑥 ∈ (0..^(𝑌𝑋)))
72 swrdfv 11139 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
7368, 69, 70, 71, 72syl31anc 1253 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → ((𝑆 substr ⟨𝑋, 𝑌⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
7467, 73eqtrd 2239 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑌𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
759adantr 276 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴)
7614adantr 276 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴)
7732, 39eqtrd 2239 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))) = (𝑍𝑋))
7829, 77oveq12d 5980 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) = ((𝑌𝑋)..^(𝑍𝑋)))
7978eleq2d 2276 . . . . . . . 8 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
8079biimpar 297 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩)))))
81 ccatval2 11087 . . . . . . 7 (((𝑆 substr ⟨𝑋, 𝑌⟩) ∈ Word 𝐴 ∧ (𝑆 substr ⟨𝑌, 𝑍⟩) ∈ Word 𝐴𝑥 ∈ ((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))..^((♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)) + (♯‘(𝑆 substr ⟨𝑌, 𝑍⟩))))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
8275, 76, 80, 81syl3anc 1250 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))))
83 simpll 527 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
84 simplr2 1043 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ (0...𝑍))
85 simplr3 1044 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
8629oveq2d 5978 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
8786adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) = (𝑥 − (𝑌𝑋)))
8839oveq2d 5978 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) = ((𝑌𝑋)..^(𝑍𝑋)))
8988eleq2d 2276 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ↔ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))))
9089biimpar 297 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))))
9137, 33zsubcld 9530 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑍𝑌) ∈ ℤ)
9291adantr 276 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑍𝑌) ∈ ℤ)
93 fzosubel3 10357 . . . . . . . . 9 ((𝑥 ∈ ((𝑌𝑋)..^((𝑌𝑋) + (𝑍𝑌))) ∧ (𝑍𝑌) ∈ ℤ) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
9490, 92, 93syl2anc 411 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (𝑌𝑋)) ∈ (0..^(𝑍𝑌)))
9587, 94eqeltrd 2283 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌)))
96 swrdfv 11139 . . . . . . 7 (((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ (𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) ∈ (0..^(𝑍𝑌))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
9783, 84, 85, 95, 96syl31anc 1253 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑌, 𝑍⟩)‘(𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩)))) = (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)))
9886oveq1d 5977 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
9998adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = ((𝑥 − (𝑌𝑋)) + 𝑌))
100 elfzoelz 10299 . . . . . . . . . . 11 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℤ)
101100zcnd 9526 . . . . . . . . . 10 (𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)) → 𝑥 ∈ ℂ)
102101adantl 277 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑥 ∈ ℂ)
10334, 36subcld 8413 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌𝑋) ∈ ℂ)
104103adantr 276 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑌𝑋) ∈ ℂ)
10534adantr 276 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → 𝑌 ∈ ℂ)
106102, 104, 105subadd23d 8435 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (𝑌𝑋)) + 𝑌) = (𝑥 + (𝑌 − (𝑌𝑋))))
10734, 36nncand 8418 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑌 − (𝑌𝑋)) = 𝑋)
108107oveq2d 5978 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
109108adantr 276 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑥 + (𝑌 − (𝑌𝑋))) = (𝑥 + 𝑋))
11099, 106, 1093eqtrd 2243 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → ((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌) = (𝑥 + 𝑋))
111110fveq2d 5598 . . . . . 6 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (𝑆‘((𝑥 − (♯‘(𝑆 substr ⟨𝑋, 𝑌⟩))) + 𝑌)) = (𝑆‘(𝑥 + 𝑋)))
11282, 97, 1113eqtrd 2243 . . . . 5 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
11374, 112jaodan 799 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ (𝑥 ∈ (0..^(𝑌𝑋)) ∨ 𝑥 ∈ ((𝑌𝑋)..^(𝑍𝑋)))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
11460, 113syldan 282 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
115 simpll 527 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑆 ∈ Word 𝐴)
11651adantr 276 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑋 ∈ (0...𝑍))
117 simplr3 1044 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑍 ∈ (0...(♯‘𝑆)))
118 simpr 110 . . . 4 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → 𝑥 ∈ (0..^(𝑍𝑋)))
119 swrdfv 11139 . . . 4 (((𝑆 ∈ Word 𝐴𝑋 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
120115, 116, 117, 118, 119syl31anc 1253 . . 3 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥) = (𝑆‘(𝑥 + 𝑋)))
121114, 120eqtr4d 2242 . 2 (((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑍𝑋))) → (((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩))‘𝑥) = ((𝑆 substr ⟨𝑋, 𝑍⟩)‘𝑥))
12243, 56, 121eqfnfvd 5698 1 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨𝑋, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 substr ⟨𝑋, 𝑍⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177  cop 3641   Fn wfn 5280  cfv 5285  (class class class)co 5962  cc 7953  0cc0 7955   + caddc 7958  cmin 8273  cz 9402  ...cfz 10160  ..^cfzo 10294  chash 10952  Word cword 11026   ++ cconcat 11079   substr csubstr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-ihash 10953  df-word 11027  df-concat 11080  df-substr 11132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator