| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrhmulg | GIF version | ||
| Description: Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| zrhval2.m | ⊢ · = (.g‘𝑅) |
| zrhval2.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| zrhmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 2 | zrhval2.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
| 3 | zrhval2.1 | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 4 | 1, 2, 3 | zrhval2 14352 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 5 | 4 | fveq1d 5577 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐿‘𝑁) = ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁)) |
| 7 | eqid 2204 | . . 3 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 8 | oveq1 5950 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 · 1 ) = (𝑁 · 1 )) | |
| 9 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 10 | eqid 2204 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | ringgrp 13734 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
| 13 | 10, 3 | ringidcl 13753 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 1 ∈ (Base‘𝑅)) |
| 15 | 10, 2, 12, 9, 14 | mulgcld 13451 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝑁 · 1 ) ∈ (Base‘𝑅)) |
| 16 | 7, 8, 9, 15 | fvmptd3 5672 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁) = (𝑁 · 1 )) |
| 17 | 6, 16 | eqtrd 2237 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ↦ cmpt 4104 ‘cfv 5270 (class class class)co 5943 ℤcz 9371 Basecbs 12803 Grpcgrp 13303 .gcmg 13426 1rcur 13692 Ringcrg 13729 ℤRHomczrh 14344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-dec 9504 df-uz 9648 df-rp 9775 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-cj 11124 df-abs 11281 df-struct 12805 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-mulr 12894 df-starv 12895 df-tset 12899 df-ple 12900 df-ds 12902 df-unif 12903 df-0g 13061 df-topgen 13063 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-mhm 13262 df-grp 13306 df-minusg 13307 df-mulg 13427 df-subg 13477 df-ghm 13548 df-cmn 13593 df-mgp 13654 df-ur 13693 df-ring 13731 df-cring 13732 df-rhm 13885 df-subrg 13952 df-bl 14279 df-mopn 14280 df-fg 14282 df-metu 14283 df-cnfld 14290 df-zring 14324 df-zrh 14347 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |