| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrhmulg | GIF version | ||
| Description: Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| zrhval2.m | ⊢ · = (.g‘𝑅) |
| zrhval2.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| zrhmulg | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 2 | zrhval2.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
| 3 | zrhval2.1 | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 4 | 1, 2, 3 | zrhval2 14456 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) |
| 5 | 4 | fveq1d 5591 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐿‘𝑁) = ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁)) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁)) |
| 7 | eqid 2206 | . . 3 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) | |
| 8 | oveq1 5964 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑛 · 1 ) = (𝑁 · 1 )) | |
| 9 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 10 | eqid 2206 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | ringgrp 13838 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
| 13 | 10, 3 | ringidcl 13857 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → 1 ∈ (Base‘𝑅)) |
| 15 | 10, 2, 12, 9, 14 | mulgcld 13555 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝑁 · 1 ) ∈ (Base‘𝑅)) |
| 16 | 7, 8, 9, 15 | fvmptd3 5686 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((𝑛 ∈ ℤ ↦ (𝑛 · 1 ))‘𝑁) = (𝑁 · 1 )) |
| 17 | 6, 16 | eqtrd 2239 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4113 ‘cfv 5280 (class class class)co 5957 ℤcz 9392 Basecbs 12907 Grpcgrp 13407 .gcmg 13530 1rcur 13796 Ringcrg 13833 ℤRHomczrh 14448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-dec 9525 df-uz 9669 df-rp 9796 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-cj 11228 df-abs 11385 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-starv 12999 df-tset 13003 df-ple 13004 df-ds 13006 df-unif 13007 df-0g 13165 df-topgen 13167 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-mhm 13366 df-grp 13410 df-minusg 13411 df-mulg 13531 df-subg 13581 df-ghm 13652 df-cmn 13697 df-mgp 13758 df-ur 13797 df-ring 13835 df-cring 13836 df-rhm 13989 df-subrg 14056 df-bl 14383 df-mopn 14384 df-fg 14386 df-metu 14387 df-cnfld 14394 df-zring 14428 df-zrh 14451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |