Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones7 Structured version   Visualization version   GIF version

Theorem sticksstones7 42165
Description: Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones7.1 (𝜑𝑁 ∈ ℕ0)
sticksstones7.2 (𝜑𝐾 ∈ ℕ0)
sticksstones7.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones7.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones7.5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
sticksstones7.6 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
Assertion
Ref Expression
sticksstones7 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Distinct variable groups:   𝑥,𝐺   𝑖,𝐾,𝑥   𝑖,𝑋,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones7
StepHypRef Expression
1 sticksstones7.5 . . . 4 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
3 simpr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43oveq2d 7421 . . . . 5 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
54sumeq1d 15716 . . . 4 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
63, 5oveq12d 7423 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
7 sticksstones7.4 . . 3 (𝜑𝑋 ∈ (1...𝐾))
8 elfznn 13570 . . . . . 6 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
97, 8syl 17 . . . . 5 (𝜑𝑋 ∈ ℕ)
109nnnn0d 12562 . . . 4 (𝜑𝑋 ∈ ℕ0)
11 fzfid 13991 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
12 1zzd 12623 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
13 sticksstones7.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12614 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
1514adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
1615peano2zd 12700 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
17 elfzelz 13541 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
19 elfzle1 13544 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 1 ≤ 𝑖)
2019adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
2118zred 12697 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
229nnred 12255 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2322adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
2416zred 12697 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
25 elfzle2 13545 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2625adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
2713nn0red 12563 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
28 1red 11236 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
2927, 28readdcld 11264 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℝ)
30 elfzle2 13545 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
317, 30syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
3227lep1d 12173 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐾 + 1))
3322, 27, 29, 31, 32letrd 11392 . . . . . . . . 9 (𝜑𝑋 ≤ (𝐾 + 1))
3433adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ≤ (𝐾 + 1))
3521, 23, 24, 26, 34letrd 11392 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
3612, 16, 18, 20, 35elfzd 13532 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
37 sticksstones7.3 . . . . . . . 8 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3837adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
3938ffvelcdmda 7074 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
4036, 39mpdan 687 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
4111, 40fsumnn0cl 15752 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
4210, 41nn0addcld 12566 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
432, 6, 7, 42fvmptd 6993 . 2 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
44 1zzd 12623 . . 3 (𝜑 → 1 ∈ ℤ)
45 sticksstones7.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
4645nn0zd 12614 . . . 4 (𝜑𝑁 ∈ ℤ)
4746, 14zaddcld 12701 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℤ)
4842nn0zd 12614 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℤ)
49 eqid 2735 . . . . . 6 1 = 1
50 1p0e1 12364 . . . . . 6 (1 + 0) = 1
5149, 50eqtr4i 2761 . . . . 5 1 = (1 + 0)
5251a1i 11 . . . 4 (𝜑 → 1 = (1 + 0))
53 0red 11238 . . . . 5 (𝜑 → 0 ∈ ℝ)
5441nn0red 12563 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
559nnge1d 12288 . . . . 5 (𝜑 → 1 ≤ 𝑋)
5641nn0ge0d 12565 . . . . 5 (𝜑 → 0 ≤ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
5728, 53, 22, 54, 55, 56le2addd 11856 . . . 4 (𝜑 → (1 + 0) ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5852, 57eqbrtrd 5141 . . 3 (𝜑 → 1 ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5945nn0red 12563 . . . . 5 (𝜑𝑁 ∈ ℝ)
60 fzfid 13991 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)...(𝐾 + 1)) ∈ Fin)
6144adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℤ)
6214peano2zd 12700 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℤ)
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
64 elfzelz 13541 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ∈ ℤ)
6564adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℤ)
6628adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℝ)
6722adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ∈ ℝ)
6867, 66readdcld 11264 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ∈ ℝ)
6965zred 12697 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℝ)
7055adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑋)
7167lep1d 12173 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ≤ (𝑋 + 1))
7266, 67, 68, 70, 71letrd 11392 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ (𝑋 + 1))
73 elfzle1 13544 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → (𝑋 + 1) ≤ 𝑖)
7473adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ≤ 𝑖)
7566, 68, 69, 72, 74letrd 11392 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑖)
76 elfzle2 13545 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ≤ (𝐾 + 1))
7776adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ≤ (𝐾 + 1))
7861, 63, 65, 75, 77elfzd 13532 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
7937ffvelcdmda 7074 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8079adantlr 715 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8178, 80mpdan 687 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8260, 81fsumnn0cl 15752 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℕ0)
8382nn0ge0d 12565 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))
8482nn0red 12563 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℝ)
8554, 84addge01d 11825 . . . . . . . 8 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))))
8683, 85mpbid 232 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
8722ltp1d 12172 . . . . . . . . 9 (𝜑𝑋 < (𝑋 + 1))
88 fzdisj 13568 . . . . . . . . 9 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
8987, 88syl 17 . . . . . . . 8 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
9010nn0zd 12614 . . . . . . . . . 10 (𝜑𝑋 ∈ ℤ)
9144, 62, 90, 55, 33elfzd 13532 . . . . . . . . 9 (𝜑𝑋 ∈ (1...(𝐾 + 1)))
92 fzsplit 13567 . . . . . . . . 9 (𝑋 ∈ (1...(𝐾 + 1)) → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
9391, 92syl 17 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
94 fzfid 13991 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
95 nn0cn 12511 . . . . . . . . 9 ((𝐺𝑖) ∈ ℕ0 → (𝐺𝑖) ∈ ℂ)
9679, 95syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℂ)
9789, 93, 94, 96fsumsplit 15757 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
9886, 97breqtrrd 5147 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
99 sticksstones7.6 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
10099eqcomd 2741 . . . . . 6 (𝜑𝑁 = Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
10198, 100breqtrrd 5147 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ 𝑁)
10222, 54, 27, 59, 31, 101le2addd 11856 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝐾 + 𝑁))
10313nn0cnd 12564 . . . . 5 (𝜑𝐾 ∈ ℂ)
10445nn0cnd 12564 . . . . 5 (𝜑𝑁 ∈ ℂ)
105103, 104addcomd 11437 . . . 4 (𝜑 → (𝐾 + 𝑁) = (𝑁 + 𝐾))
106102, 105breqtrd 5145 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝑁 + 𝐾))
10744, 47, 48, 58, 106elfzd 13532 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ (1...(𝑁 + 𝐾)))
10843, 107eqeltrd 2834 1 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3924  cin 3925  c0 4308   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by:  sticksstones8  42166
  Copyright terms: Public domain W3C validator