Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones7 Structured version   Visualization version   GIF version

Theorem sticksstones7 39777
Description: Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones7.1 (𝜑𝑁 ∈ ℕ0)
sticksstones7.2 (𝜑𝐾 ∈ ℕ0)
sticksstones7.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones7.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones7.5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
sticksstones7.6 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
Assertion
Ref Expression
sticksstones7 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Distinct variable groups:   𝑥,𝐺   𝑖,𝐾,𝑥   𝑖,𝑋,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones7
StepHypRef Expression
1 sticksstones7.5 . . . 4 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
3 simpr 488 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43oveq2d 7207 . . . . 5 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
54sumeq1d 15230 . . . 4 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
63, 5oveq12d 7209 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
7 sticksstones7.4 . . 3 (𝜑𝑋 ∈ (1...𝐾))
8 elfznn 13106 . . . . . 6 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
97, 8syl 17 . . . . 5 (𝜑𝑋 ∈ ℕ)
109nnnn0d 12115 . . . 4 (𝜑𝑋 ∈ ℕ0)
11 fzfid 13511 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
12 1zzd 12173 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
13 sticksstones7.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12245 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
1514adantr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
1615peano2zd 12250 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
17 elfzelz 13077 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℤ)
1817adantl 485 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
19 elfzle1 13080 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 1 ≤ 𝑖)
2019adantl 485 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
2118zred 12247 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
229nnred 11810 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2322adantr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
2416zred 12247 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
25 elfzle2 13081 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2625adantl 485 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
2713nn0red 12116 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
28 1red 10799 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
2927, 28readdcld 10827 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℝ)
30 elfzle2 13081 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
317, 30syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
3227lep1d 11728 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐾 + 1))
3322, 27, 29, 31, 32letrd 10954 . . . . . . . . 9 (𝜑𝑋 ≤ (𝐾 + 1))
3433adantr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ≤ (𝐾 + 1))
3521, 23, 24, 26, 34letrd 10954 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
3612, 16, 18, 20, 35elfzd 13068 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
37 sticksstones7.3 . . . . . . . 8 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3837adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
3938ffvelrnda 6882 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
4036, 39mpdan 687 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
4111, 40fsumnn0cl 15265 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
4210, 41nn0addcld 12119 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
432, 6, 7, 42fvmptd 6803 . 2 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
44 1zzd 12173 . . 3 (𝜑 → 1 ∈ ℤ)
45 sticksstones7.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
4645nn0zd 12245 . . . 4 (𝜑𝑁 ∈ ℤ)
4746, 14zaddcld 12251 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℤ)
4842nn0zd 12245 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℤ)
49 eqid 2736 . . . . . 6 1 = 1
50 1p0e1 11919 . . . . . 6 (1 + 0) = 1
5149, 50eqtr4i 2762 . . . . 5 1 = (1 + 0)
5251a1i 11 . . . 4 (𝜑 → 1 = (1 + 0))
53 0red 10801 . . . . 5 (𝜑 → 0 ∈ ℝ)
5441nn0red 12116 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
559nnge1d 11843 . . . . 5 (𝜑 → 1 ≤ 𝑋)
5641nn0ge0d 12118 . . . . 5 (𝜑 → 0 ≤ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
5728, 53, 22, 54, 55, 56le2addd 11416 . . . 4 (𝜑 → (1 + 0) ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5852, 57eqbrtrd 5061 . . 3 (𝜑 → 1 ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5945nn0red 12116 . . . . 5 (𝜑𝑁 ∈ ℝ)
60 fzfid 13511 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)...(𝐾 + 1)) ∈ Fin)
6144adantr 484 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℤ)
6214peano2zd 12250 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℤ)
6362adantr 484 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
64 elfzelz 13077 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ∈ ℤ)
6564adantl 485 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℤ)
6628adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℝ)
6722adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ∈ ℝ)
6867, 66readdcld 10827 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ∈ ℝ)
6965zred 12247 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℝ)
7055adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑋)
7167lep1d 11728 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ≤ (𝑋 + 1))
7266, 67, 68, 70, 71letrd 10954 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ (𝑋 + 1))
73 elfzle1 13080 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → (𝑋 + 1) ≤ 𝑖)
7473adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ≤ 𝑖)
7566, 68, 69, 72, 74letrd 10954 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑖)
76 elfzle2 13081 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ≤ (𝐾 + 1))
7776adantl 485 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ≤ (𝐾 + 1))
7861, 63, 65, 75, 77elfzd 13068 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
7937ffvelrnda 6882 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8079adantlr 715 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8178, 80mpdan 687 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8260, 81fsumnn0cl 15265 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℕ0)
8382nn0ge0d 12118 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))
8482nn0red 12116 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℝ)
8554, 84addge01d 11385 . . . . . . . 8 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))))
8683, 85mpbid 235 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
8722ltp1d 11727 . . . . . . . . 9 (𝜑𝑋 < (𝑋 + 1))
88 fzdisj 13104 . . . . . . . . 9 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
8987, 88syl 17 . . . . . . . 8 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
9010nn0zd 12245 . . . . . . . . . 10 (𝜑𝑋 ∈ ℤ)
9144, 62, 90, 55, 33elfzd 13068 . . . . . . . . 9 (𝜑𝑋 ∈ (1...(𝐾 + 1)))
92 fzsplit 13103 . . . . . . . . 9 (𝑋 ∈ (1...(𝐾 + 1)) → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
9391, 92syl 17 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
94 fzfid 13511 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
95 nn0cn 12065 . . . . . . . . 9 ((𝐺𝑖) ∈ ℕ0 → (𝐺𝑖) ∈ ℂ)
9679, 95syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℂ)
9789, 93, 94, 96fsumsplit 15269 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
9886, 97breqtrrd 5067 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
99 sticksstones7.6 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
10099eqcomd 2742 . . . . . 6 (𝜑𝑁 = Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
10198, 100breqtrrd 5067 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ 𝑁)
10222, 54, 27, 59, 31, 101le2addd 11416 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝐾 + 𝑁))
10313nn0cnd 12117 . . . . 5 (𝜑𝐾 ∈ ℂ)
10445nn0cnd 12117 . . . . 5 (𝜑𝑁 ∈ ℂ)
105103, 104addcomd 10999 . . . 4 (𝜑 → (𝐾 + 𝑁) = (𝑁 + 𝐾))
106102, 105breqtrd 5065 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝑁 + 𝐾))
10744, 47, 48, 58, 106elfzd 13068 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ (1...(𝑁 + 𝐾)))
10843, 107eqeltrd 2831 1 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cun 3851  cin 3852  c0 4223   class class class wbr 5039  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   < clt 10832  cle 10833  cn 11795  0cn0 12055  cz 12141  ...cfz 13060  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by:  sticksstones8  39778
  Copyright terms: Public domain W3C validator