Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones7 Structured version   Visualization version   GIF version

Theorem sticksstones7 40108
Description: Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones7.1 (𝜑𝑁 ∈ ℕ0)
sticksstones7.2 (𝜑𝐾 ∈ ℕ0)
sticksstones7.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones7.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones7.5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
sticksstones7.6 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
Assertion
Ref Expression
sticksstones7 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Distinct variable groups:   𝑥,𝐺   𝑖,𝐾,𝑥   𝑖,𝑋,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones7
StepHypRef Expression
1 sticksstones7.5 . . . 4 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
3 simpr 485 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43oveq2d 7291 . . . . 5 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
54sumeq1d 15413 . . . 4 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
63, 5oveq12d 7293 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
7 sticksstones7.4 . . 3 (𝜑𝑋 ∈ (1...𝐾))
8 elfznn 13285 . . . . . 6 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
97, 8syl 17 . . . . 5 (𝜑𝑋 ∈ ℕ)
109nnnn0d 12293 . . . 4 (𝜑𝑋 ∈ ℕ0)
11 fzfid 13693 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
12 1zzd 12351 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
13 sticksstones7.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12424 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
1514adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
1615peano2zd 12429 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
17 elfzelz 13256 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℤ)
1817adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
19 elfzle1 13259 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 1 ≤ 𝑖)
2019adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
2118zred 12426 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
229nnred 11988 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2322adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
2416zred 12426 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
25 elfzle2 13260 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2625adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
2713nn0red 12294 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
28 1red 10976 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
2927, 28readdcld 11004 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℝ)
30 elfzle2 13260 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
317, 30syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
3227lep1d 11906 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐾 + 1))
3322, 27, 29, 31, 32letrd 11132 . . . . . . . . 9 (𝜑𝑋 ≤ (𝐾 + 1))
3433adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ≤ (𝐾 + 1))
3521, 23, 24, 26, 34letrd 11132 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
3612, 16, 18, 20, 35elfzd 13247 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
37 sticksstones7.3 . . . . . . . 8 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3837adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
3938ffvelrnda 6961 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
4036, 39mpdan 684 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
4111, 40fsumnn0cl 15448 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
4210, 41nn0addcld 12297 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
432, 6, 7, 42fvmptd 6882 . 2 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
44 1zzd 12351 . . 3 (𝜑 → 1 ∈ ℤ)
45 sticksstones7.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
4645nn0zd 12424 . . . 4 (𝜑𝑁 ∈ ℤ)
4746, 14zaddcld 12430 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℤ)
4842nn0zd 12424 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℤ)
49 eqid 2738 . . . . . 6 1 = 1
50 1p0e1 12097 . . . . . 6 (1 + 0) = 1
5149, 50eqtr4i 2769 . . . . 5 1 = (1 + 0)
5251a1i 11 . . . 4 (𝜑 → 1 = (1 + 0))
53 0red 10978 . . . . 5 (𝜑 → 0 ∈ ℝ)
5441nn0red 12294 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
559nnge1d 12021 . . . . 5 (𝜑 → 1 ≤ 𝑋)
5641nn0ge0d 12296 . . . . 5 (𝜑 → 0 ≤ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
5728, 53, 22, 54, 55, 56le2addd 11594 . . . 4 (𝜑 → (1 + 0) ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5852, 57eqbrtrd 5096 . . 3 (𝜑 → 1 ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5945nn0red 12294 . . . . 5 (𝜑𝑁 ∈ ℝ)
60 fzfid 13693 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)...(𝐾 + 1)) ∈ Fin)
6144adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℤ)
6214peano2zd 12429 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℤ)
6362adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
64 elfzelz 13256 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ∈ ℤ)
6564adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℤ)
6628adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℝ)
6722adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ∈ ℝ)
6867, 66readdcld 11004 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ∈ ℝ)
6965zred 12426 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℝ)
7055adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑋)
7167lep1d 11906 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ≤ (𝑋 + 1))
7266, 67, 68, 70, 71letrd 11132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ (𝑋 + 1))
73 elfzle1 13259 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → (𝑋 + 1) ≤ 𝑖)
7473adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ≤ 𝑖)
7566, 68, 69, 72, 74letrd 11132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑖)
76 elfzle2 13260 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ≤ (𝐾 + 1))
7776adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ≤ (𝐾 + 1))
7861, 63, 65, 75, 77elfzd 13247 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
7937ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8079adantlr 712 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8178, 80mpdan 684 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8260, 81fsumnn0cl 15448 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℕ0)
8382nn0ge0d 12296 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))
8482nn0red 12294 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℝ)
8554, 84addge01d 11563 . . . . . . . 8 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))))
8683, 85mpbid 231 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
8722ltp1d 11905 . . . . . . . . 9 (𝜑𝑋 < (𝑋 + 1))
88 fzdisj 13283 . . . . . . . . 9 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
8987, 88syl 17 . . . . . . . 8 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
9010nn0zd 12424 . . . . . . . . . 10 (𝜑𝑋 ∈ ℤ)
9144, 62, 90, 55, 33elfzd 13247 . . . . . . . . 9 (𝜑𝑋 ∈ (1...(𝐾 + 1)))
92 fzsplit 13282 . . . . . . . . 9 (𝑋 ∈ (1...(𝐾 + 1)) → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
9391, 92syl 17 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
94 fzfid 13693 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
95 nn0cn 12243 . . . . . . . . 9 ((𝐺𝑖) ∈ ℕ0 → (𝐺𝑖) ∈ ℂ)
9679, 95syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℂ)
9789, 93, 94, 96fsumsplit 15453 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
9886, 97breqtrrd 5102 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
99 sticksstones7.6 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
10099eqcomd 2744 . . . . . 6 (𝜑𝑁 = Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
10198, 100breqtrrd 5102 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ 𝑁)
10222, 54, 27, 59, 31, 101le2addd 11594 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝐾 + 𝑁))
10313nn0cnd 12295 . . . . 5 (𝜑𝐾 ∈ ℂ)
10445nn0cnd 12295 . . . . 5 (𝜑𝑁 ∈ ℂ)
105103, 104addcomd 11177 . . . 4 (𝜑 → (𝐾 + 𝑁) = (𝑁 + 𝐾))
106102, 105breqtrd 5100 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝑁 + 𝐾))
10744, 47, 48, 58, 106elfzd 13247 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ (1...(𝑁 + 𝐾)))
10843, 107eqeltrd 2839 1 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sticksstones8  40109
  Copyright terms: Public domain W3C validator