Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones7 Structured version   Visualization version   GIF version

Theorem sticksstones7 42135
Description: Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones7.1 (𝜑𝑁 ∈ ℕ0)
sticksstones7.2 (𝜑𝐾 ∈ ℕ0)
sticksstones7.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones7.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones7.5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
sticksstones7.6 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
Assertion
Ref Expression
sticksstones7 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Distinct variable groups:   𝑥,𝐺   𝑖,𝐾,𝑥   𝑖,𝑋,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones7
StepHypRef Expression
1 sticksstones7.5 . . . 4 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
3 simpr 484 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
43oveq2d 7365 . . . . 5 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
54sumeq1d 15607 . . . 4 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
63, 5oveq12d 7367 . . 3 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
7 sticksstones7.4 . . 3 (𝜑𝑋 ∈ (1...𝐾))
8 elfznn 13456 . . . . . 6 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
97, 8syl 17 . . . . 5 (𝜑𝑋 ∈ ℕ)
109nnnn0d 12445 . . . 4 (𝜑𝑋 ∈ ℕ0)
11 fzfid 13880 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
12 1zzd 12506 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
13 sticksstones7.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
1413nn0zd 12497 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
1514adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
1615peano2zd 12583 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
17 elfzelz 13427 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℤ)
1817adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
19 elfzle1 13430 . . . . . . . 8 (𝑖 ∈ (1...𝑋) → 1 ≤ 𝑖)
2019adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
2118zred 12580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
229nnred 12143 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2322adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
2416zred 12580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
25 elfzle2 13431 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2625adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
2713nn0red 12446 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
28 1red 11116 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
2927, 28readdcld 11144 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℝ)
30 elfzle2 13431 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
317, 30syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
3227lep1d 12056 . . . . . . . . . 10 (𝜑𝐾 ≤ (𝐾 + 1))
3322, 27, 29, 31, 32letrd 11273 . . . . . . . . 9 (𝜑𝑋 ≤ (𝐾 + 1))
3433adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ≤ (𝐾 + 1))
3521, 23, 24, 26, 34letrd 11273 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
3612, 16, 18, 20, 35elfzd 13418 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
37 sticksstones7.3 . . . . . . . 8 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3837adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
3938ffvelcdmda 7018 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
4036, 39mpdan 687 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
4111, 40fsumnn0cl 15643 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
4210, 41nn0addcld 12449 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
432, 6, 7, 42fvmptd 6937 . 2 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
44 1zzd 12506 . . 3 (𝜑 → 1 ∈ ℤ)
45 sticksstones7.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
4645nn0zd 12497 . . . 4 (𝜑𝑁 ∈ ℤ)
4746, 14zaddcld 12584 . . 3 (𝜑 → (𝑁 + 𝐾) ∈ ℤ)
4842nn0zd 12497 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℤ)
49 eqid 2729 . . . . . 6 1 = 1
50 1p0e1 12247 . . . . . 6 (1 + 0) = 1
5149, 50eqtr4i 2755 . . . . 5 1 = (1 + 0)
5251a1i 11 . . . 4 (𝜑 → 1 = (1 + 0))
53 0red 11118 . . . . 5 (𝜑 → 0 ∈ ℝ)
5441nn0red 12446 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
559nnge1d 12176 . . . . 5 (𝜑 → 1 ≤ 𝑋)
5641nn0ge0d 12448 . . . . 5 (𝜑 → 0 ≤ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
5728, 53, 22, 54, 55, 56le2addd 11739 . . . 4 (𝜑 → (1 + 0) ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5852, 57eqbrtrd 5114 . . 3 (𝜑 → 1 ≤ (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
5945nn0red 12446 . . . . 5 (𝜑𝑁 ∈ ℝ)
60 fzfid 13880 . . . . . . . . . 10 (𝜑 → ((𝑋 + 1)...(𝐾 + 1)) ∈ Fin)
6144adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℤ)
6214peano2zd 12583 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℤ)
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐾 + 1) ∈ ℤ)
64 elfzelz 13427 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ∈ ℤ)
6564adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℤ)
6628adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ∈ ℝ)
6722adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ∈ ℝ)
6867, 66readdcld 11144 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ∈ ℝ)
6965zred 12580 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ ℝ)
7055adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑋)
7167lep1d 12056 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑋 ≤ (𝑋 + 1))
7266, 67, 68, 70, 71letrd 11273 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ (𝑋 + 1))
73 elfzle1 13430 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → (𝑋 + 1) ≤ 𝑖)
7473adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝑋 + 1) ≤ 𝑖)
7566, 68, 69, 72, 74letrd 11273 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 1 ≤ 𝑖)
76 elfzle2 13431 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1)) → 𝑖 ≤ (𝐾 + 1))
7776adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ≤ (𝐾 + 1))
7861, 63, 65, 75, 77elfzd 13418 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
7937ffvelcdmda 7018 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8079adantlr 715 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8178, 80mpdan 687 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
8260, 81fsumnn0cl 15643 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℕ0)
8382nn0ge0d 12448 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))
8482nn0red 12446 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ∈ ℝ)
8554, 84addge01d 11708 . . . . . . . 8 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖))))
8683, 85mpbid 232 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
8722ltp1d 12055 . . . . . . . . 9 (𝜑𝑋 < (𝑋 + 1))
88 fzdisj 13454 . . . . . . . . 9 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
8987, 88syl 17 . . . . . . . 8 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...(𝐾 + 1))) = ∅)
9010nn0zd 12497 . . . . . . . . . 10 (𝜑𝑋 ∈ ℤ)
9144, 62, 90, 55, 33elfzd 13418 . . . . . . . . 9 (𝜑𝑋 ∈ (1...(𝐾 + 1)))
92 fzsplit 13453 . . . . . . . . 9 (𝑋 ∈ (1...(𝐾 + 1)) → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
9391, 92syl 17 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) = ((1...𝑋) ∪ ((𝑋 + 1)...(𝐾 + 1))))
94 fzfid 13880 . . . . . . . 8 (𝜑 → (1...(𝐾 + 1)) ∈ Fin)
95 nn0cn 12394 . . . . . . . . 9 ((𝐺𝑖) ∈ ℕ0 → (𝐺𝑖) ∈ ℂ)
9679, 95syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℂ)
9789, 93, 94, 96fsumsplit 15648 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...(𝐾 + 1))(𝐺𝑖)))
9886, 97breqtrrd 5120 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
99 sticksstones7.6 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)
10099eqcomd 2735 . . . . . 6 (𝜑𝑁 = Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖))
10198, 100breqtrrd 5120 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ 𝑁)
10222, 54, 27, 59, 31, 101le2addd 11739 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝐾 + 𝑁))
10313nn0cnd 12447 . . . . 5 (𝜑𝐾 ∈ ℂ)
10445nn0cnd 12447 . . . . 5 (𝜑𝑁 ∈ ℂ)
105103, 104addcomd 11318 . . . 4 (𝜑 → (𝐾 + 𝑁) = (𝑁 + 𝐾))
106102, 105breqtrd 5118 . . 3 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ≤ (𝑁 + 𝐾))
10744, 47, 48, 58, 106elfzd 13418 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ (1...(𝑁 + 𝐾)))
10843, 107eqeltrd 2828 1 (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  cin 3902  c0 4284   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  0cn0 12384  cz 12471  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones8  42136
  Copyright terms: Public domain W3C validator