Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   GIF version

Theorem clim1fr1 43832
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
clim1fr1.2 (𝜑𝐴 ∈ ℂ)
clim1fr1.3 (𝜑𝐴 ≠ 0)
clim1fr1.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
clim1fr1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem clim1fr1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . 3 ℕ = (ℤ‘1)
2 1zzd 12534 . . 3 (𝜑 → 1 ∈ ℤ)
3 nnex 12159 . . . . . 6 ℕ ∈ V
43mptex 7173 . . . . 5 (𝑛 ∈ ℕ ↦ 1) ∈ V
54a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈ V)
6 1cnd 11150 . . . 4 (𝜑 → 1 ∈ ℂ)
7 eqidd 2737 . . . . . 6 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1))
8 eqidd 2737 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1)
9 id 22 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
10 1cnd 11150 . . . . . 6 (𝑘 ∈ ℕ → 1 ∈ ℂ)
117, 8, 9, 10fvmptd 6955 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
1211adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
131, 2, 5, 6, 12climconst 15425 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝ 1)
14 clim1fr1.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
153mptex 7173 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V
1614, 15eqeltri 2834 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 clim1fr1.4 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1918adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
20 clim1fr1.2 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2120adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 nncn 12161 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2322adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
24 clim1fr1.3 . . . . . . 7 (𝜑𝐴 ≠ 0)
2524adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ≠ 0)
26 nnne0 12187 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2726adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2819, 21, 23, 25, 27divdiv1d 11962 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛)))
2928mpteq2dva 5205 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
3018, 20, 24divcld 11931 . . . . 5 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
31 divcnv 15738 . . . . 5 ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3230, 31syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3329, 32eqbrtrrd 5129 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0)
34 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1)
35 1cnd 11150 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3634, 35fmpti 7060 . . . . 5 (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ
3736a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ)
3837ffvelcdmda 7035 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈ ℂ)
3921, 23mulcld 11175 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ)
4021, 23, 25, 27mulne0d 11807 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0)
4119, 39, 40divcld 11931 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ)
4241fmpttd 7063 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ)
4342ffvelcdmda 7035 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ)
44 oveq2 7365 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘))
4544oveq1d 7372 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵))
4645, 44oveq12d 7375 . . . . 5 (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
47 simpr 485 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4820adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4947nncnd 12169 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
5048, 49mulcld 11175 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
5118adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
5250, 51addcld 11174 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ)
5324adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐴 ≠ 0)
5447nnne0d 12203 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5548, 49, 53, 54mulne0d 11807 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0)
5652, 50, 55divcld 11931 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ)
5714, 46, 47, 56fvmptd3 6971 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
5850, 51, 50, 55divdird 11969 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))))
5950, 55dividd 11929 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1)
6059oveq1d 7372 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘))))
6158, 60eqtrd 2776 . . . 4 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘))))
6212eqcomd 2742 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦ 1)‘𝑘))
63 eqidd 2737 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
64 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
6564oveq2d 7373 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘))
6665oveq2d 7373 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘)))
6751, 50, 55divcld 11931 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ)
6863, 66, 47, 67fvmptd 6955 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘)))
6968eqcomd 2742 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))
7062, 69oveq12d 7375 . . . 4 ((𝜑𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
7157, 61, 703eqtrd 2780 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
721, 2, 13, 17, 33, 38, 43, 71climadd 15514 . 2 (𝜑𝐹 ⇝ (1 + 0))
73 1p0e1 12277 . 2 (1 + 0) = 1
7472, 73breqtrdi 5146 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   / cdiv 11812  cn 12153  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371
This theorem is referenced by:  wallispilem5  44300
  Copyright terms: Public domain W3C validator