Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   GIF version

Theorem clim1fr1 45616
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
clim1fr1.2 (𝜑𝐴 ∈ ℂ)
clim1fr1.3 (𝜑𝐴 ≠ 0)
clim1fr1.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
clim1fr1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem clim1fr1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12921 . . 3 ℕ = (ℤ‘1)
2 1zzd 12648 . . 3 (𝜑 → 1 ∈ ℤ)
3 nnex 12272 . . . . . 6 ℕ ∈ V
43mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ 1) ∈ V
54a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈ V)
6 1cnd 11256 . . . 4 (𝜑 → 1 ∈ ℂ)
7 eqidd 2738 . . . . . 6 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1))
8 eqidd 2738 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1)
9 id 22 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
10 1cnd 11256 . . . . . 6 (𝑘 ∈ ℕ → 1 ∈ ℂ)
117, 8, 9, 10fvmptd 7023 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
1211adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
131, 2, 5, 6, 12climconst 15579 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝ 1)
14 clim1fr1.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
153mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V
1614, 15eqeltri 2837 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 clim1fr1.4 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
20 clim1fr1.2 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 nncn 12274 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2322adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
24 clim1fr1.3 . . . . . . 7 (𝜑𝐴 ≠ 0)
2524adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ≠ 0)
26 nnne0 12300 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2726adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2819, 21, 23, 25, 27divdiv1d 12074 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛)))
2928mpteq2dva 5242 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
3018, 20, 24divcld 12043 . . . . 5 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
31 divcnv 15889 . . . . 5 ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3230, 31syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3329, 32eqbrtrrd 5167 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0)
34 eqid 2737 . . . . . 6 (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1)
35 1cnd 11256 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3634, 35fmpti 7132 . . . . 5 (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ
3736a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ)
3837ffvelcdmda 7104 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈ ℂ)
3921, 23mulcld 11281 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ)
4021, 23, 25, 27mulne0d 11915 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0)
4119, 39, 40divcld 12043 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ)
4241fmpttd 7135 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ)
4342ffvelcdmda 7104 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ)
44 oveq2 7439 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘))
4544oveq1d 7446 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵))
4645, 44oveq12d 7449 . . . . 5 (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
47 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4820adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4947nncnd 12282 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
5048, 49mulcld 11281 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
5118adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
5250, 51addcld 11280 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ)
5324adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐴 ≠ 0)
5447nnne0d 12316 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5548, 49, 53, 54mulne0d 11915 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0)
5652, 50, 55divcld 12043 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ)
5714, 46, 47, 56fvmptd3 7039 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
5850, 51, 50, 55divdird 12081 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))))
5950, 55dividd 12041 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1)
6059oveq1d 7446 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘))))
6158, 60eqtrd 2777 . . . 4 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘))))
6212eqcomd 2743 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦ 1)‘𝑘))
63 eqidd 2738 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
64 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
6564oveq2d 7447 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘))
6665oveq2d 7447 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘)))
6751, 50, 55divcld 12043 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ)
6863, 66, 47, 67fvmptd 7023 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘)))
6968eqcomd 2743 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))
7062, 69oveq12d 7449 . . . 4 ((𝜑𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
7157, 61, 703eqtrd 2781 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
721, 2, 13, 17, 33, 38, 43, 71climadd 15668 . 2 (𝜑𝐹 ⇝ (1 + 0))
73 1p0e1 12390 . 2 (1 + 0) = 1
7472, 73breqtrdi 5184 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   / cdiv 11920  cn 12266  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525
This theorem is referenced by:  wallispilem5  46084
  Copyright terms: Public domain W3C validator