Step | Hyp | Ref
| Expression |
1 | | nnuz 12621 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12351 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | nnex 11979 |
. . . . . 6
⊢ ℕ
∈ V |
4 | 3 | mptex 7099 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ 1)
∈ V |
5 | 4 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈
V) |
6 | | 1cnd 10970 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
7 | | eqidd 2739 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) =
(𝑛 ∈ ℕ ↦
1)) |
8 | | eqidd 2739 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1) |
9 | | id 22 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
10 | | 1cnd 10970 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
11 | 7, 8, 9, 10 | fvmptd 6882 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
1)‘𝑘) =
1) |
12 | 11 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1) |
13 | 1, 2, 5, 6, 12 | climconst 15252 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝
1) |
14 | | clim1fr1.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) |
15 | 3 | mptex 7099 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V |
16 | 14, 15 | eqeltri 2835 |
. . . 4
⊢ 𝐹 ∈ V |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
18 | | clim1fr1.4 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℂ) |
20 | | clim1fr1.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℂ) |
22 | | nncn 11981 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
23 | 22 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
24 | | clim1fr1.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ 0) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) |
26 | | nnne0 12007 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
27 | 26 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0) |
28 | 19, 21, 23, 25, 27 | divdiv1d 11782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛))) |
29 | 28 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))) |
30 | 18, 20, 24 | divcld 11751 |
. . . . 5
⊢ (𝜑 → (𝐵 / 𝐴) ∈ ℂ) |
31 | | divcnv 15565 |
. . . . 5
⊢ ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0) |
33 | 29, 32 | eqbrtrrd 5098 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0) |
34 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ 1) =
(𝑛 ∈ ℕ ↦
1) |
35 | | 1cnd 10970 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
36 | 34, 35 | fmpti 6986 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
1):ℕ⟶ℂ |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
1):ℕ⟶ℂ) |
38 | 37 | ffvelrnda 6961 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈
ℂ) |
39 | 21, 23 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ) |
40 | 21, 23, 25, 27 | mulne0d 11627 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0) |
41 | 19, 39, 40 | divcld 11751 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ) |
42 | 41 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ) |
43 | 42 | ffvelrnda 6961 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ) |
44 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘)) |
45 | 44 | oveq1d 7290 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵)) |
46 | 45, 44 | oveq12d 7293 |
. . . . 5
⊢ (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘))) |
47 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
48 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
49 | 47 | nncnd 11989 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
50 | 48, 49 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ) |
51 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
52 | 50, 51 | addcld 10994 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ) |
53 | 24 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ≠ 0) |
54 | 47 | nnne0d 12023 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0) |
55 | 48, 49, 53, 54 | mulne0d 11627 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0) |
56 | 52, 50, 55 | divcld 11751 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ) |
57 | 14, 46, 47, 56 | fvmptd3 6898 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘))) |
58 | 50, 51, 50, 55 | divdird 11789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘)))) |
59 | 50, 55 | dividd 11749 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1) |
60 | 59 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘)))) |
61 | 58, 60 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘)))) |
62 | 12 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦
1)‘𝑘)) |
63 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))) |
64 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘) |
65 | 64 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘)) |
66 | 65 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘))) |
67 | 51, 50, 55 | divcld 11751 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ) |
68 | 63, 66, 47, 67 | fvmptd 6882 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘))) |
69 | 68 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)) |
70 | 62, 69 | oveq12d 7293 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))) |
71 | 57, 61, 70 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))) |
72 | 1, 2, 13, 17, 33, 38, 43, 71 | climadd 15341 |
. 2
⊢ (𝜑 → 𝐹 ⇝ (1 + 0)) |
73 | | 1p0e1 12097 |
. 2
⊢ (1 + 0) =
1 |
74 | 72, 73 | breqtrdi 5115 |
1
⊢ (𝜑 → 𝐹 ⇝ 1) |