Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   GIF version

Theorem clim1fr1 45557
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
clim1fr1.2 (𝜑𝐴 ∈ ℂ)
clim1fr1.3 (𝜑𝐴 ≠ 0)
clim1fr1.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
clim1fr1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem clim1fr1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12919 . . 3 ℕ = (ℤ‘1)
2 1zzd 12646 . . 3 (𝜑 → 1 ∈ ℤ)
3 nnex 12270 . . . . . 6 ℕ ∈ V
43mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ 1) ∈ V
54a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈ V)
6 1cnd 11254 . . . 4 (𝜑 → 1 ∈ ℂ)
7 eqidd 2736 . . . . . 6 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1))
8 eqidd 2736 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1)
9 id 22 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
10 1cnd 11254 . . . . . 6 (𝑘 ∈ ℕ → 1 ∈ ℂ)
117, 8, 9, 10fvmptd 7023 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
1211adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
131, 2, 5, 6, 12climconst 15576 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝ 1)
14 clim1fr1.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
153mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V
1614, 15eqeltri 2835 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 clim1fr1.4 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
20 clim1fr1.2 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 nncn 12272 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2322adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
24 clim1fr1.3 . . . . . . 7 (𝜑𝐴 ≠ 0)
2524adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ≠ 0)
26 nnne0 12298 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2726adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2819, 21, 23, 25, 27divdiv1d 12072 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛)))
2928mpteq2dva 5248 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
3018, 20, 24divcld 12041 . . . . 5 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
31 divcnv 15886 . . . . 5 ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3230, 31syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3329, 32eqbrtrrd 5172 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0)
34 eqid 2735 . . . . . 6 (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1)
35 1cnd 11254 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3634, 35fmpti 7132 . . . . 5 (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ
3736a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ)
3837ffvelcdmda 7104 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈ ℂ)
3921, 23mulcld 11279 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ)
4021, 23, 25, 27mulne0d 11913 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0)
4119, 39, 40divcld 12041 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ)
4241fmpttd 7135 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ)
4342ffvelcdmda 7104 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ)
44 oveq2 7439 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘))
4544oveq1d 7446 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵))
4645, 44oveq12d 7449 . . . . 5 (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
47 simpr 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4820adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4947nncnd 12280 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
5048, 49mulcld 11279 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
5118adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
5250, 51addcld 11278 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ)
5324adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐴 ≠ 0)
5447nnne0d 12314 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5548, 49, 53, 54mulne0d 11913 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0)
5652, 50, 55divcld 12041 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ)
5714, 46, 47, 56fvmptd3 7039 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
5850, 51, 50, 55divdird 12079 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))))
5950, 55dividd 12039 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1)
6059oveq1d 7446 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘))))
6158, 60eqtrd 2775 . . . 4 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘))))
6212eqcomd 2741 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦ 1)‘𝑘))
63 eqidd 2736 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
64 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
6564oveq2d 7447 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘))
6665oveq2d 7447 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘)))
6751, 50, 55divcld 12041 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ)
6863, 66, 47, 67fvmptd 7023 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘)))
6968eqcomd 2741 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))
7062, 69oveq12d 7449 . . . 4 ((𝜑𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
7157, 61, 703eqtrd 2779 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
721, 2, 13, 17, 33, 38, 43, 71climadd 15665 . 2 (𝜑𝐹 ⇝ (1 + 0))
73 1p0e1 12388 . 2 (1 + 0) = 1
7472, 73breqtrdi 5189 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   / cdiv 11918  cn 12264  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522
This theorem is referenced by:  wallispilem5  46025
  Copyright terms: Public domain W3C validator