Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   GIF version

Theorem clim1fr1 45127
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
clim1fr1.2 (𝜑𝐴 ∈ ℂ)
clim1fr1.3 (𝜑𝐴 ≠ 0)
clim1fr1.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
clim1fr1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem clim1fr1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12898 . . 3 ℕ = (ℤ‘1)
2 1zzd 12626 . . 3 (𝜑 → 1 ∈ ℤ)
3 nnex 12251 . . . . . 6 ℕ ∈ V
43mptex 7235 . . . . 5 (𝑛 ∈ ℕ ↦ 1) ∈ V
54a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈ V)
6 1cnd 11241 . . . 4 (𝜑 → 1 ∈ ℂ)
7 eqidd 2726 . . . . . 6 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1))
8 eqidd 2726 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1)
9 id 22 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
10 1cnd 11241 . . . . . 6 (𝑘 ∈ ℕ → 1 ∈ ℂ)
117, 8, 9, 10fvmptd 7011 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
1211adantl 480 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
131, 2, 5, 6, 12climconst 15523 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝ 1)
14 clim1fr1.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
153mptex 7235 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V
1614, 15eqeltri 2821 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 clim1fr1.4 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1918adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
20 clim1fr1.2 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2120adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 nncn 12253 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2322adantl 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
24 clim1fr1.3 . . . . . . 7 (𝜑𝐴 ≠ 0)
2524adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ≠ 0)
26 nnne0 12279 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2726adantl 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2819, 21, 23, 25, 27divdiv1d 12054 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛)))
2928mpteq2dva 5249 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
3018, 20, 24divcld 12023 . . . . 5 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
31 divcnv 15835 . . . . 5 ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3230, 31syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3329, 32eqbrtrrd 5173 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0)
34 eqid 2725 . . . . . 6 (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1)
35 1cnd 11241 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3634, 35fmpti 7121 . . . . 5 (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ
3736a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ)
3837ffvelcdmda 7093 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈ ℂ)
3921, 23mulcld 11266 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ)
4021, 23, 25, 27mulne0d 11898 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0)
4119, 39, 40divcld 12023 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ)
4241fmpttd 7124 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ)
4342ffvelcdmda 7093 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ)
44 oveq2 7427 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘))
4544oveq1d 7434 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵))
4645, 44oveq12d 7437 . . . . 5 (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
47 simpr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4820adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4947nncnd 12261 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
5048, 49mulcld 11266 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
5118adantr 479 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
5250, 51addcld 11265 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ)
5324adantr 479 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐴 ≠ 0)
5447nnne0d 12295 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5548, 49, 53, 54mulne0d 11898 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0)
5652, 50, 55divcld 12023 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ)
5714, 46, 47, 56fvmptd3 7027 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
5850, 51, 50, 55divdird 12061 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))))
5950, 55dividd 12021 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1)
6059oveq1d 7434 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘))))
6158, 60eqtrd 2765 . . . 4 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘))))
6212eqcomd 2731 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦ 1)‘𝑘))
63 eqidd 2726 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
64 simpr 483 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
6564oveq2d 7435 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘))
6665oveq2d 7435 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘)))
6751, 50, 55divcld 12023 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ)
6863, 66, 47, 67fvmptd 7011 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘)))
6968eqcomd 2731 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))
7062, 69oveq12d 7437 . . . 4 ((𝜑𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
7157, 61, 703eqtrd 2769 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
721, 2, 13, 17, 33, 38, 43, 71climadd 15612 . 2 (𝜑𝐹 ⇝ (1 + 0))
73 1p0e1 12369 . 2 (1 + 0) = 1
7472, 73breqtrdi 5190 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461   class class class wbr 5149  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   / cdiv 11903  cn 12245  cli 15464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fl 13793  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469
This theorem is referenced by:  wallispilem5  45595
  Copyright terms: Public domain W3C validator