Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   GIF version

Theorem clim1fr1 41758
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
clim1fr1.2 (𝜑𝐴 ∈ ℂ)
clim1fr1.3 (𝜑𝐴 ≠ 0)
clim1fr1.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
clim1fr1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝜑,𝑛   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem clim1fr1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12269 . . 3 ℕ = (ℤ‘1)
2 1zzd 12001 . . 3 (𝜑 → 1 ∈ ℤ)
3 nnex 11632 . . . . . 6 ℕ ∈ V
43mptex 6977 . . . . 5 (𝑛 ∈ ℕ ↦ 1) ∈ V
54a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ∈ V)
6 1cnd 10624 . . . 4 (𝜑 → 1 ∈ ℂ)
7 eqidd 2819 . . . . . 6 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1))
8 eqidd 2819 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 1 = 1)
9 id 22 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
10 1cnd 10624 . . . . . 6 (𝑘 ∈ ℕ → 1 ∈ ℂ)
117, 8, 9, 10fvmptd 6767 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
1211adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) = 1)
131, 2, 5, 6, 12climconst 14888 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ 1) ⇝ 1)
14 clim1fr1.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))
153mptex 6977 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) ∈ V
1614, 15eqeltri 2906 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 clim1fr1.4 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1918adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℂ)
20 clim1fr1.2 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2120adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
22 nncn 11634 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2322adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
24 clim1fr1.3 . . . . . . 7 (𝜑𝐴 ≠ 0)
2524adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ≠ 0)
26 nnne0 11659 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
2726adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2819, 21, 23, 25, 27divdiv1d 11435 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵 / 𝐴) / 𝑛) = (𝐵 / (𝐴 · 𝑛)))
2928mpteq2dva 5152 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
3018, 20, 24divcld 11404 . . . . 5 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
31 divcnv 15196 . . . . 5 ((𝐵 / 𝐴) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3230, 31syl 17 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐵 / 𝐴) / 𝑛)) ⇝ 0)
3329, 32eqbrtrrd 5081 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) ⇝ 0)
34 eqid 2818 . . . . . 6 (𝑛 ∈ ℕ ↦ 1) = (𝑛 ∈ ℕ ↦ 1)
35 1cnd 10624 . . . . . 6 (𝑛 ∈ ℕ → 1 ∈ ℂ)
3634, 35fmpti 6868 . . . . 5 (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ
3736a1i 11 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ 1):ℕ⟶ℂ)
3837ffvelrnda 6843 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ 1)‘𝑘) ∈ ℂ)
3921, 23mulcld 10649 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ∈ ℂ)
4021, 23, 25, 27mulne0d 11280 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴 · 𝑛) ≠ 0)
4119, 39, 40divcld 11404 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (𝐴 · 𝑛)) ∈ ℂ)
4241fmpttd 6871 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))):ℕ⟶ℂ)
4342ffvelrnda 6843 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) ∈ ℂ)
44 oveq2 7153 . . . . . . 7 (𝑛 = 𝑘 → (𝐴 · 𝑛) = (𝐴 · 𝑘))
4544oveq1d 7160 . . . . . 6 (𝑛 = 𝑘 → ((𝐴 · 𝑛) + 𝐵) = ((𝐴 · 𝑘) + 𝐵))
4645, 44oveq12d 7163 . . . . 5 (𝑛 = 𝑘 → (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
47 simpr 485 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
4820adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4947nncnd 11642 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
5048, 49mulcld 10649 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
5118adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
5250, 51addcld 10648 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) + 𝐵) ∈ ℂ)
5324adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐴 ≠ 0)
5447nnne0d 11675 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5548, 49, 53, 54mulne0d 11280 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 · 𝑘) ≠ 0)
5652, 50, 55divcld 11404 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) ∈ ℂ)
5714, 46, 47, 56fvmptd3 6783 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)))
5850, 51, 50, 55divdird 11442 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))))
5950, 55dividd 11402 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐴 · 𝑘) / (𝐴 · 𝑘)) = 1)
6059oveq1d 7160 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) / (𝐴 · 𝑘)) + (𝐵 / (𝐴 · 𝑘))) = (1 + (𝐵 / (𝐴 · 𝑘))))
6158, 60eqtrd 2853 . . . 4 ((𝜑𝑘 ∈ ℕ) → (((𝐴 · 𝑘) + 𝐵) / (𝐴 · 𝑘)) = (1 + (𝐵 / (𝐴 · 𝑘))))
6212eqcomd 2824 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 1 = ((𝑛 ∈ ℕ ↦ 1)‘𝑘))
63 eqidd 2819 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛))))
64 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
6564oveq2d 7161 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐴 · 𝑛) = (𝐴 · 𝑘))
6665oveq2d 7161 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → (𝐵 / (𝐴 · 𝑛)) = (𝐵 / (𝐴 · 𝑘)))
6751, 50, 55divcld 11404 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) ∈ ℂ)
6863, 66, 47, 67fvmptd 6767 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘) = (𝐵 / (𝐴 · 𝑘)))
6968eqcomd 2824 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐵 / (𝐴 · 𝑘)) = ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘))
7062, 69oveq12d 7163 . . . 4 ((𝜑𝑘 ∈ ℕ) → (1 + (𝐵 / (𝐴 · 𝑘))) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
7157, 61, 703eqtrd 2857 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (((𝑛 ∈ ℕ ↦ 1)‘𝑘) + ((𝑛 ∈ ℕ ↦ (𝐵 / (𝐴 · 𝑛)))‘𝑘)))
721, 2, 13, 17, 33, 38, 43, 71climadd 14976 . 2 (𝜑𝐹 ⇝ (1 + 0))
73 1p0e1 11749 . 2 (1 + 0) = 1
7472, 73breqtrdi 5098 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   / cdiv 11285  cn 11626  cli 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834
This theorem is referenced by:  wallispilem5  42231
  Copyright terms: Public domain W3C validator