![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addlenrevpfx | Structured version Visualization version GIF version |
Description: The sum of the lengths of two reversed parts of a word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 3-May-2020.) |
Ref | Expression |
---|---|
addlenrevpfx | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix 𝑀))) = (♯‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdrlen 14608 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝑀)) | |
2 | pfxlen 14632 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀) | |
3 | 1, 2 | oveq12d 7426 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix 𝑀))) = (((♯‘𝑊) − 𝑀) + 𝑀)) |
4 | lencl 14482 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
5 | elfzelz 13500 | . . 3 ⊢ (𝑀 ∈ (0...(♯‘𝑊)) → 𝑀 ∈ ℤ) | |
6 | nn0cn 12481 | . . . 4 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ) | |
7 | zcn 12562 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | npcan 11468 | . . . 4 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 𝑀 ∈ ℂ) → (((♯‘𝑊) − 𝑀) + 𝑀) = (♯‘𝑊)) | |
9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝑀 ∈ ℤ) → (((♯‘𝑊) − 𝑀) + 𝑀) = (♯‘𝑊)) |
10 | 4, 5, 9 | syl2an 596 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (((♯‘𝑊) − 𝑀) + 𝑀) = (♯‘𝑊)) |
11 | 3, 10 | eqtrd 2772 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix 𝑀))) = (♯‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 0cc0 11109 + caddc 11112 − cmin 11443 ℕ0cn0 12471 ℤcz 12557 ...cfz 13483 ♯chash 14289 Word cword 14463 substr csubstr 14589 prefix cpfx 14619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-substr 14590 df-pfx 14620 |
This theorem is referenced by: lenrevpfxcctswrd 14661 |
Copyright terms: Public domain | W3C validator |