MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxlen Structured version   Visualization version   GIF version

Theorem pfxlen 14629
Description: Length of a prefix. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by AV, 2-May-2020.)
Assertion
Ref Expression
pfxlen ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐿)) = 𝐿)

Proof of Theorem pfxlen
StepHypRef Expression
1 pfxfn 14627 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) Fn (0..^𝐿))
2 hashfn 14331 . . 3 ((𝑆 prefix 𝐿) Fn (0..^𝐿) → (♯‘(𝑆 prefix 𝐿)) = (♯‘(0..^𝐿)))
31, 2syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐿)) = (♯‘(0..^𝐿)))
4 elfznn0 13590 . . . 4 (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0)
54adantl 481 . . 3 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0)
6 hashfzo0 14386 . . 3 (𝐿 ∈ ℕ0 → (♯‘(0..^𝐿)) = 𝐿)
75, 6syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(0..^𝐿)) = 𝐿)
83, 7eqtrd 2764 1 ((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐿)) = 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098   Fn wfn 6528  cfv 6533  (class class class)co 7401  0cc0 11105  0cn0 12468  ...cfz 13480  ..^cfzo 13623  chash 14286  Word cword 14460   prefix cpfx 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587  df-pfx 14617
This theorem is referenced by:  addlenrevpfx  14636  addlenpfx  14637  pfxfvlsw  14641  pfxeq  14642  ccatpfx  14647  wrdind  14668  wrd2ind  14669  pfxccatin12  14679  spllen  14700  splfv1  14701  splfv2a  14702  splval2  14703  repswpfx  14731  cshwlen  14745  cshwidxmod  14749  pfx2  14894  efgsres  19643  efgredleme  19648  efgredlemd  19649  efgredlemc  19650  efgredlem  19652  efgcpbllemb  19660  wlkres  29351  trlreslem  29380  wwlksm1edg  29559  wwlksnred  29570  wwlksnextproplem3  29589  clwlkclwwlk  29679  clwwlkinwwlk  29717  clwwlkf  29724  wwlksubclwwlk  29735  clwlknf1oclwwlknlem1  29758  pfxlsw2ccat  32540  wrdt2ind  32541  splfv3  32546  cycpmco2lem2  32713  cycpmco2lem3  32714  cycpmco2lem4  32715  cycpmco2lem5  32716  cycpmco2lem6  32717  cycpmco2  32719  signstfveq0  34043  revpfxsfxrev  34561  swrdrevpfx  34562  pfxwlk  34569  swrdwlk  34572
  Copyright terms: Public domain W3C validator