MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem14 Structured version   Visualization version   GIF version

Theorem 4sqlem14 16286
Description: Lemma for 4sq 16292. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem14 (𝜑𝑅 ∈ ℕ0)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem14
StepHypRef Expression
1 4sq.r . 2 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.6 . . . . . . . . 9 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
32ssrab3 4055 . . . . . . . 8 𝑇 ⊆ ℕ
4 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
5 nnuz 12273 . . . . . . . . . . 11 ℕ = (ℤ‘1)
63, 5sseqtri 4001 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
7 4sq.1 . . . . . . . . . . . 12 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
8 4sq.2 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
9 4sq.3 . . . . . . . . . . . 12 (𝜑𝑃 = ((2 · 𝑁) + 1))
10 4sq.4 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
11 4sq.5 . . . . . . . . . . . 12 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
127, 8, 9, 10, 11, 2, 44sqlem13 16285 . . . . . . . . . . 11 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1312simpld 497 . . . . . . . . . 10 (𝜑𝑇 ≠ ∅)
14 infssuzcl 12324 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
156, 13, 14sylancr 589 . . . . . . . . 9 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
164, 15eqeltrid 2915 . . . . . . . 8 (𝜑𝑀𝑇)
173, 16sseldi 3963 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1817nnzd 12078 . . . . . 6 (𝜑𝑀 ∈ ℤ)
19 prmz 16011 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2010, 19syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
21 dvdsmul1 15623 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑃))
2218, 20, 21syl2anc 586 . . . . . 6 (𝜑𝑀 ∥ (𝑀 · 𝑃))
23 4sq.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
24 4sq.e . . . . . . . . . . 11 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2523, 17, 244sqlem8 16273 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐸↑2)))
26 4sq.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
27 4sq.f . . . . . . . . . . 11 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2826, 17, 274sqlem8 16273 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐹↑2)))
29 zsqcl 13486 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
3023, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℤ)
3123, 17, 244sqlem5 16270 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
3231simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℤ)
33 zsqcl2 13494 . . . . . . . . . . . . . 14 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) ∈ ℕ0)
3534nn0zd 12077 . . . . . . . . . . . 12 (𝜑 → (𝐸↑2) ∈ ℤ)
3630, 35zsubcld 12084 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) − (𝐸↑2)) ∈ ℤ)
37 zsqcl 13486 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
3826, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℤ)
3926, 17, 274sqlem5 16270 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
4039simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℤ)
41 zsqcl2 13494 . . . . . . . . . . . . . 14 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹↑2) ∈ ℕ0)
4342nn0zd 12077 . . . . . . . . . . . 12 (𝜑 → (𝐹↑2) ∈ ℤ)
4438, 43zsubcld 12084 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) − (𝐹↑2)) ∈ ℤ)
45 dvds2add 15635 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ ((𝐴↑2) − (𝐸↑2)) ∈ ℤ ∧ ((𝐵↑2) − (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ ((𝐴↑2) − (𝐸↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐹↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2)))))
4618, 36, 44, 45syl3anc 1366 . . . . . . . . . 10 (𝜑 → ((𝑀 ∥ ((𝐴↑2) − (𝐸↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐹↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2)))))
4725, 28, 46mp2and 697 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
4823zcnd 12080 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
4948sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℂ)
5026zcnd 12080 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
5150sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
5232zcnd 12080 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
5352sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℂ)
5440zcnd 12080 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℂ)
5554sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℂ)
5649, 51, 53, 55addsub4d 11036 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
5747, 56breqtrrd 5085 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))))
58 4sq.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
59 4sq.g . . . . . . . . . . 11 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
6058, 17, 594sqlem8 16273 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐶↑2) − (𝐺↑2)))
61 4sq.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℤ)
62 4sq.h . . . . . . . . . . 11 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
6361, 17, 624sqlem8 16273 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐷↑2) − (𝐻↑2)))
64 zsqcl 13486 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
6558, 64syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℤ)
6658, 17, 594sqlem5 16270 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
6766simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ ℤ)
68 zsqcl2 13494 . . . . . . . . . . . . . 14 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
6967, 68syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺↑2) ∈ ℕ0)
7069nn0zd 12077 . . . . . . . . . . . 12 (𝜑 → (𝐺↑2) ∈ ℤ)
7165, 70zsubcld 12084 . . . . . . . . . . 11 (𝜑 → ((𝐶↑2) − (𝐺↑2)) ∈ ℤ)
72 zsqcl 13486 . . . . . . . . . . . . 13 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
7361, 72syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℤ)
7461, 17, 624sqlem5 16270 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
7574simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ ℤ)
76 zsqcl2 13494 . . . . . . . . . . . . . 14 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐻↑2) ∈ ℕ0)
7877nn0zd 12077 . . . . . . . . . . . 12 (𝜑 → (𝐻↑2) ∈ ℤ)
7973, 78zsubcld 12084 . . . . . . . . . . 11 (𝜑 → ((𝐷↑2) − (𝐻↑2)) ∈ ℤ)
80 dvds2add 15635 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ ((𝐶↑2) − (𝐺↑2)) ∈ ℤ ∧ ((𝐷↑2) − (𝐻↑2)) ∈ ℤ) → ((𝑀 ∥ ((𝐶↑2) − (𝐺↑2)) ∧ 𝑀 ∥ ((𝐷↑2) − (𝐻↑2))) → 𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2)))))
8118, 71, 79, 80syl3anc 1366 . . . . . . . . . 10 (𝜑 → ((𝑀 ∥ ((𝐶↑2) − (𝐺↑2)) ∧ 𝑀 ∥ ((𝐷↑2) − (𝐻↑2))) → 𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2)))))
8260, 63, 81mp2and 697 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
8358zcnd 12080 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
8483sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℂ)
8561zcnd 12080 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
8685sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℂ)
8767zcnd 12080 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℂ)
8887sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℂ)
8975zcnd 12080 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℂ)
9089sqcld 13500 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℂ)
9184, 86, 88, 90addsub4d 11036 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
9282, 91breqtrrd 5085 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))
9330, 38zaddcld 12083 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
9434, 42nn0addcld 11951 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
9594nn0zd 12077 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
9693, 95zsubcld 12084 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ)
9765, 73zaddcld 12083 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
9869, 77nn0addcld 11951 . . . . . . . . . . 11 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
9998nn0zd 12077 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℤ)
10097, 99zsubcld 12084 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
101 dvds2add 15635 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ ∧ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → ((𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∧ 𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))) → 𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))))
10218, 96, 100, 101syl3anc 1366 . . . . . . . 8 (𝜑 → ((𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∧ 𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))) → 𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))))
10357, 92, 102mp2and 697 . . . . . . 7 (𝜑𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
104 4sq.p . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
105104oveq1d 7163 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
10649, 51addcld 10652 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
10784, 86addcld 10652 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
10853, 55addcld 10652 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
10988, 90addcld 10652 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
110106, 107, 108, 109addsub4d 11036 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
111105, 110eqtrd 2854 . . . . . . 7 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
112103, 111breqtrrd 5085 . . . . . 6 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
11318, 20zmulcld 12085 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
11495, 99zaddcld 12083 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
115113, 114zsubcld 12084 . . . . . 6 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∈ ℤ)
11618, 22, 112, 113, 115dvds2subd 15637 . . . . 5 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))))
11717nncnd 11646 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
118 prmnn 16010 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11910, 118syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
120119nncnd 11646 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
121117, 120mulcld 10653 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
122108, 109addcld 10652 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
123121, 122nncand 10994 . . . . 5 (𝜑 → ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
124116, 123breqtrd 5083 . . . 4 (𝜑𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
12517nnne0d 11679 . . . . 5 (𝜑𝑀 ≠ 0)
12694, 98nn0addcld 11951 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℕ0)
127126nn0zd 12077 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
128 dvdsval2 15602 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
12918, 125, 127, 128syl3anc 1366 . . . 4 (𝜑 → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
130124, 129mpbid 234 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ)
131126nn0red 11948 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
132126nn0ge0d 11950 . . . 4 (𝜑 → 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
13317nnred 11645 . . . 4 (𝜑𝑀 ∈ ℝ)
13417nngt0d 11678 . . . 4 (𝜑 → 0 < 𝑀)
135 divge0 11501 . . . 4 ((((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
136131, 132, 133, 134, 135syl22anc 836 . . 3 (𝜑 → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
137 elnn0z 11986 . . 3 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0 ↔ (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ ∧ 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)))
138130, 136, 137sylanbrc 585 . 2 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0)
1391, 138eqeltrid 2915 1 (𝜑𝑅 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {cab 2797  wne 3014  wrex 3137  {crab 3140  wss 3934  c0 4289   class class class wbr 5057  cfv 6348  (class class class)co 7148  infcinf 8897  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  ...cfz 12884   mod cmo 13229  cexp 13421  cdvds 15599  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-prm 16008  df-gz 16258
This theorem is referenced by:  4sqlem17  16289
  Copyright terms: Public domain W3C validator