MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem14 Structured version   Visualization version   GIF version

Theorem 4sqlem14 16991
Description: Lemma for 4sq 16997. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem14 (𝜑𝑅 ∈ ℕ0)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem14
StepHypRef Expression
1 4sq.r . 2 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.6 . . . . . . . . 9 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
32ssrab3 4091 . . . . . . . 8 𝑇 ⊆ ℕ
4 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
5 nnuz 12918 . . . . . . . . . . 11 ℕ = (ℤ‘1)
63, 5sseqtri 4031 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
7 4sq.1 . . . . . . . . . . . 12 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
8 4sq.2 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
9 4sq.3 . . . . . . . . . . . 12 (𝜑𝑃 = ((2 · 𝑁) + 1))
10 4sq.4 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
11 4sq.5 . . . . . . . . . . . 12 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
127, 8, 9, 10, 11, 2, 44sqlem13 16990 . . . . . . . . . . 11 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1312simpld 494 . . . . . . . . . 10 (𝜑𝑇 ≠ ∅)
14 infssuzcl 12971 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
156, 13, 14sylancr 587 . . . . . . . . 9 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
164, 15eqeltrid 2842 . . . . . . . 8 (𝜑𝑀𝑇)
173, 16sselid 3992 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1817nnzd 12637 . . . . . 6 (𝜑𝑀 ∈ ℤ)
19 prmz 16708 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2010, 19syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2118, 20zmulcld 12725 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
22 4sq.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
23 4sq.e . . . . . . . . . . . . 13 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2422, 17, 234sqlem5 16975 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
2524simpld 494 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℤ)
26 zsqcl2 14174 . . . . . . . . . . 11 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℕ0)
28 4sq.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℤ)
29 4sq.f . . . . . . . . . . . . 13 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3028, 17, 294sqlem5 16975 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
3130simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℤ)
32 zsqcl2 14174 . . . . . . . . . . 11 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℕ0)
3427, 33nn0addcld 12588 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
3534nn0zd 12636 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
36 4sq.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
37 4sq.g . . . . . . . . . . . . 13 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3836, 17, 374sqlem5 16975 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
3938simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℤ)
40 zsqcl2 14174 . . . . . . . . . . 11 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℕ0)
42 4sq.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℤ)
43 4sq.h . . . . . . . . . . . . 13 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 17, 434sqlem5 16975 . . . . . . . . . . . 12 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
4544simpld 494 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
46 zsqcl2 14174 . . . . . . . . . . 11 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
4745, 46syl 17 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℕ0)
4841, 47nn0addcld 12588 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
4948nn0zd 12636 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℤ)
5035, 49zaddcld 12723 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
5121, 50zsubcld 12724 . . . . . 6 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∈ ℤ)
52 dvdsmul1 16311 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑃))
5318, 20, 52syl2anc 584 . . . . . 6 (𝜑𝑀 ∥ (𝑀 · 𝑃))
54 zsqcl 14165 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
5522, 54syl 17 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℤ)
56 zsqcl 14165 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
5728, 56syl 17 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℤ)
5855, 57zaddcld 12723 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
5958, 35zsubcld 12724 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ)
60 zsqcl 14165 . . . . . . . . . . 11 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
6136, 60syl 17 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℤ)
62 zsqcl 14165 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
6342, 62syl 17 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℤ)
6461, 63zaddcld 12723 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
6564, 49zsubcld 12724 . . . . . . . 8 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
6627nn0zd 12636 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℤ)
6755, 66zsubcld 12724 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐸↑2)) ∈ ℤ)
6833nn0zd 12636 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ∈ ℤ)
6957, 68zsubcld 12724 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐹↑2)) ∈ ℤ)
7022, 17, 234sqlem8 16978 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐸↑2)))
7128, 17, 294sqlem8 16978 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐹↑2)))
7218, 67, 69, 70, 71dvds2addd 16325 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
7322zcnd 12720 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
7473sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℂ)
7528zcnd 12720 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
7675sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
7725zcnd 12720 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
7877sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℂ)
7931zcnd 12720 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℂ)
8079sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℂ)
8174, 76, 78, 80addsub4d 11664 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
8272, 81breqtrrd 5175 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))))
8341nn0zd 12636 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ∈ ℤ)
8461, 83zsubcld 12724 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) − (𝐺↑2)) ∈ ℤ)
8547nn0zd 12636 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ∈ ℤ)
8663, 85zsubcld 12724 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) − (𝐻↑2)) ∈ ℤ)
8736, 17, 374sqlem8 16978 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐶↑2) − (𝐺↑2)))
8842, 17, 434sqlem8 16978 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐷↑2) − (𝐻↑2)))
8918, 84, 86, 87, 88dvds2addd 16325 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
9036zcnd 12720 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
9190sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℂ)
9242zcnd 12720 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
9392sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℂ)
9439zcnd 12720 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℂ)
9594sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℂ)
9645zcnd 12720 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℂ)
9796sqcld 14180 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℂ)
9891, 93, 95, 97addsub4d 11664 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
9989, 98breqtrrd 5175 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))
10018, 59, 65, 82, 99dvds2addd 16325 . . . . . . 7 (𝜑𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
101 4sq.p . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
102101oveq1d 7445 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
10374, 76addcld 11277 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
10491, 93addcld 11277 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
10578, 80addcld 11277 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
10695, 97addcld 11277 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
107103, 104, 105, 106addsub4d 11664 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
108102, 107eqtrd 2774 . . . . . . 7 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
109100, 108breqtrrd 5175 . . . . . 6 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
11018, 21, 51, 53, 109dvds2subd 16326 . . . . 5 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))))
11117nncnd 12279 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
112 prmnn 16707 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11310, 112syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
114113nncnd 12279 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
115111, 114mulcld 11278 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
116105, 106addcld 11277 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
117115, 116nncand 11622 . . . . 5 (𝜑 → ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
118110, 117breqtrd 5173 . . . 4 (𝜑𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
11917nnne0d 12313 . . . . 5 (𝜑𝑀 ≠ 0)
12034, 48nn0addcld 12588 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℕ0)
121120nn0zd 12636 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
122 dvdsval2 16289 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
12318, 119, 121, 122syl3anc 1370 . . . 4 (𝜑 → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
124118, 123mpbid 232 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ)
125120nn0red 12585 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
126120nn0ge0d 12587 . . . 4 (𝜑 → 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
12717nnred 12278 . . . 4 (𝜑𝑀 ∈ ℝ)
12817nngt0d 12312 . . . 4 (𝜑 → 0 < 𝑀)
129 divge0 12134 . . . 4 ((((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
130125, 126, 127, 128, 129syl22anc 839 . . 3 (𝜑 → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
131 elnn0z 12623 . . 3 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0 ↔ (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ ∧ 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)))
132124, 130, 131sylanbrc 583 . 2 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0)
1331, 132eqeltrid 2842 1 (𝜑𝑅 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  {cab 2711  wne 2937  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  (class class class)co 7430  infcinf 9478  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543   mod cmo 13905  cexp 14098  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705  df-gz 16963
This theorem is referenced by:  4sqlem17  16994
  Copyright terms: Public domain W3C validator