MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem14 Structured version   Visualization version   GIF version

Theorem 4sqlem14 16905
Description: Lemma for 4sq 16911. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem14 (𝜑𝑅 ∈ ℕ0)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem14
StepHypRef Expression
1 4sq.r . 2 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
2 4sq.6 . . . . . . . . 9 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
32ssrab3 4041 . . . . . . . 8 𝑇 ⊆ ℕ
4 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
5 nnuz 12812 . . . . . . . . . . 11 ℕ = (ℤ‘1)
63, 5sseqtri 3992 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
7 4sq.1 . . . . . . . . . . . 12 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
8 4sq.2 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
9 4sq.3 . . . . . . . . . . . 12 (𝜑𝑃 = ((2 · 𝑁) + 1))
10 4sq.4 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
11 4sq.5 . . . . . . . . . . . 12 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
127, 8, 9, 10, 11, 2, 44sqlem13 16904 . . . . . . . . . . 11 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1312simpld 494 . . . . . . . . . 10 (𝜑𝑇 ≠ ∅)
14 infssuzcl 12867 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
156, 13, 14sylancr 587 . . . . . . . . 9 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
164, 15eqeltrid 2832 . . . . . . . 8 (𝜑𝑀𝑇)
173, 16sselid 3941 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1817nnzd 12532 . . . . . 6 (𝜑𝑀 ∈ ℤ)
19 prmz 16621 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2010, 19syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2118, 20zmulcld 12620 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
22 4sq.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
23 4sq.e . . . . . . . . . . . . 13 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2422, 17, 234sqlem5 16889 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
2524simpld 494 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℤ)
26 zsqcl2 14079 . . . . . . . . . . 11 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℕ0)
28 4sq.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℤ)
29 4sq.f . . . . . . . . . . . . 13 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3028, 17, 294sqlem5 16889 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
3130simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℤ)
32 zsqcl2 14079 . . . . . . . . . . 11 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℕ0)
3427, 33nn0addcld 12483 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
3534nn0zd 12531 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
36 4sq.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
37 4sq.g . . . . . . . . . . . . 13 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
3836, 17, 374sqlem5 16889 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
3938simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℤ)
40 zsqcl2 14079 . . . . . . . . . . 11 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℕ0)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℕ0)
42 4sq.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℤ)
43 4sq.h . . . . . . . . . . . . 13 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 17, 434sqlem5 16889 . . . . . . . . . . . 12 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
4544simpld 494 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
46 zsqcl2 14079 . . . . . . . . . . 11 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℕ0)
4745, 46syl 17 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℕ0)
4841, 47nn0addcld 12483 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℕ0)
4948nn0zd 12531 . . . . . . . 8 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℤ)
5035, 49zaddcld 12618 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
5121, 50zsubcld 12619 . . . . . 6 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∈ ℤ)
52 dvdsmul1 16223 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑃))
5318, 20, 52syl2anc 584 . . . . . 6 (𝜑𝑀 ∥ (𝑀 · 𝑃))
54 zsqcl 14070 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
5522, 54syl 17 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℤ)
56 zsqcl 14070 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
5728, 56syl 17 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℤ)
5855, 57zaddcld 12618 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℤ)
5958, 35zsubcld 12619 . . . . . . . 8 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) ∈ ℤ)
60 zsqcl 14070 . . . . . . . . . . 11 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
6136, 60syl 17 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℤ)
62 zsqcl 14070 . . . . . . . . . . 11 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
6342, 62syl 17 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℤ)
6461, 63zaddcld 12618 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
6564, 49zsubcld 12619 . . . . . . . 8 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
6627nn0zd 12531 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℤ)
6755, 66zsubcld 12619 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) − (𝐸↑2)) ∈ ℤ)
6833nn0zd 12531 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ∈ ℤ)
6957, 68zsubcld 12619 . . . . . . . . . 10 (𝜑 → ((𝐵↑2) − (𝐹↑2)) ∈ ℤ)
7022, 17, 234sqlem8 16892 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐸↑2)))
7128, 17, 294sqlem8 16892 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐹↑2)))
7218, 67, 69, 70, 71dvds2addd 16238 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
7322zcnd 12615 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
7473sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐴↑2) ∈ ℂ)
7528zcnd 12615 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
7675sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
7725zcnd 12615 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
7877sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℂ)
7931zcnd 12615 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℂ)
8079sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐹↑2) ∈ ℂ)
8174, 76, 78, 80addsub4d 11556 . . . . . . . . 9 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝐴↑2) − (𝐸↑2)) + ((𝐵↑2) − (𝐹↑2))))
8272, 81breqtrrd 5130 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))))
8341nn0zd 12531 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ∈ ℤ)
8461, 83zsubcld 12619 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) − (𝐺↑2)) ∈ ℤ)
8547nn0zd 12531 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ∈ ℤ)
8663, 85zsubcld 12619 . . . . . . . . . 10 (𝜑 → ((𝐷↑2) − (𝐻↑2)) ∈ ℤ)
8736, 17, 374sqlem8 16892 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐶↑2) − (𝐺↑2)))
8842, 17, 434sqlem8 16892 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐷↑2) − (𝐻↑2)))
8918, 84, 86, 87, 88dvds2addd 16238 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
9036zcnd 12615 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
9190sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐶↑2) ∈ ℂ)
9242zcnd 12615 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
9392sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐷↑2) ∈ ℂ)
9439zcnd 12615 . . . . . . . . . . 11 (𝜑𝐺 ∈ ℂ)
9594sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐺↑2) ∈ ℂ)
9645zcnd 12615 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℂ)
9796sqcld 14085 . . . . . . . . . 10 (𝜑 → (𝐻↑2) ∈ ℂ)
9891, 93, 95, 97addsub4d 11556 . . . . . . . . 9 (𝜑 → (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝐶↑2) − (𝐺↑2)) + ((𝐷↑2) − (𝐻↑2))))
9989, 98breqtrrd 5130 . . . . . . . 8 (𝜑𝑀 ∥ (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2))))
10018, 59, 65, 82, 99dvds2addd 16238 . . . . . . 7 (𝜑𝑀 ∥ ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
101 4sq.p . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
102101oveq1d 7384 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
10374, 76addcld 11169 . . . . . . . . 9 (𝜑 → ((𝐴↑2) + (𝐵↑2)) ∈ ℂ)
10491, 93addcld 11169 . . . . . . . . 9 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℂ)
10578, 80addcld 11169 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
10695, 97addcld 11169 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
107103, 104, 105, 106addsub4d 11556 . . . . . . . 8 (𝜑 → ((((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
108102, 107eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝐴↑2) + (𝐵↑2)) − ((𝐸↑2) + (𝐹↑2))) + (((𝐶↑2) + (𝐷↑2)) − ((𝐺↑2) + (𝐻↑2)))))
109100, 108breqtrrd 5130 . . . . . 6 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))))
11018, 21, 51, 53, 109dvds2subd 16239 . . . . 5 (𝜑𝑀 ∥ ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))))
11117nncnd 12178 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
112 prmnn 16620 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11310, 112syl 17 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
114113nncnd 12178 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
115111, 114mulcld 11170 . . . . . 6 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
116105, 106addcld 11169 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
117115, 116nncand 11514 . . . . 5 (𝜑 → ((𝑀 · 𝑃) − ((𝑀 · 𝑃) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
118110, 117breqtrd 5128 . . . 4 (𝜑𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
11917nnne0d 12212 . . . . 5 (𝜑𝑀 ≠ 0)
12034, 48nn0addcld 12483 . . . . . 6 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℕ0)
121120nn0zd 12531 . . . . 5 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ)
122 dvdsval2 16201 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℤ) → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
12318, 119, 121, 122syl3anc 1373 . . . 4 (𝜑 → (𝑀 ∥ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ↔ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ))
124118, 123mpbid 232 . . 3 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ)
125120nn0red 12480 . . . 4 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
126120nn0ge0d 12482 . . . 4 (𝜑 → 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
12717nnred 12177 . . . 4 (𝜑𝑀 ∈ ℝ)
12817nngt0d 12211 . . . 4 (𝜑 → 0 < 𝑀)
129 divge0 12028 . . . 4 ((((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
130125, 126, 127, 128, 129syl22anc 838 . . 3 (𝜑 → 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀))
131 elnn0z 12518 . . 3 (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0 ↔ (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℤ ∧ 0 ≤ ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)))
132124, 130, 131sylanbrc 583 . 2 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) ∈ ℕ0)
1331, 132eqeltrid 2832 1 (𝜑𝑅 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  infcinf 9368  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444   mod cmo 13807  cexp 14002  cdvds 16198  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-gz 16877
This theorem is referenced by:  4sqlem17  16908
  Copyright terms: Public domain W3C validator