Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfid Structured version   Visualization version   GIF version

Theorem swapfid 49440
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida 49441. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapfid.x (𝜑𝑋 ∈ (Base‘𝐶))
swapfid.y (𝜑𝑌 ∈ (Base‘𝐷))
swapfid.1 1 = (Id‘𝑆)
swapfid.i 𝐼 = (Id‘𝑇)
Assertion
Ref Expression
swapfid (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)))

Proof of Theorem swapfid
StepHypRef Expression
1 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
2 swapfid.d . . 3 (𝜑𝐷 ∈ Cat)
3 swapfid.c . . 3 (𝜑𝐶 ∈ Cat)
4 eqid 2733 . . 3 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2733 . . 3 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2733 . . 3 (Id‘𝐶) = (Id‘𝐶)
8 swapfid.i . . 3 𝐼 = (Id‘𝑇)
9 swapfid.y . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
10 swapfid.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10xpcid 18103 . 2 (𝜑 → (𝐼‘⟨𝑌, 𝑋⟩) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
12 df-ov 7358 . . . 4 (𝑋𝑂𝑌) = (𝑂‘⟨𝑋, 𝑌⟩)
13 swapfid.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
1413, 10, 9swapf1 49433 . . . 4 (𝜑 → (𝑋𝑂𝑌) = ⟨𝑌, 𝑋⟩)
1512, 14eqtr3id 2782 . . 3 (𝜑 → (𝑂‘⟨𝑋, 𝑌⟩) = ⟨𝑌, 𝑋⟩)
1615fveq2d 6835 . 2 (𝜑 → (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)) = (𝐼‘⟨𝑌, 𝑋⟩))
17 swapfid.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
18 swapfid.1 . . . . 5 1 = (Id‘𝑆)
1917, 3, 2, 5, 4, 7, 6, 18, 10, 9xpcid 18103 . . . 4 (𝜑 → ( 1 ‘⟨𝑋, 𝑌⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩)
2019fveq2d 6835 . . 3 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩))
21 df-ov 7358 . . . 4 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩)
2221a1i 11 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩))
23 eqid 2733 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
245, 23, 7, 3, 10catidcl 17596 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
25 eqid 2733 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
264, 25, 6, 2, 9catidcl 17596 . . . 4 (𝜑 → ((Id‘𝐷)‘𝑌) ∈ (𝑌(Hom ‘𝐷)𝑌))
2713, 10, 9, 10, 9, 24, 26swapf2 49435 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
2820, 22, 273eqtr2d 2774 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
2911, 16, 283eqtr4rd 2779 1 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  Catccat 17578  Idccid 17579   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-xpc 18086  df-swapf 49421
This theorem is referenced by:  swapfida  49441
  Copyright terms: Public domain W3C validator