Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfid Structured version   Visualization version   GIF version

Theorem swapfid 49241
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida 49242. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapfid.x (𝜑𝑋 ∈ (Base‘𝐶))
swapfid.y (𝜑𝑌 ∈ (Base‘𝐷))
swapfid.1 1 = (Id‘𝑆)
swapfid.i 𝐼 = (Id‘𝑇)
Assertion
Ref Expression
swapfid (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)))

Proof of Theorem swapfid
StepHypRef Expression
1 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
2 swapfid.d . . 3 (𝜑𝐷 ∈ Cat)
3 swapfid.c . . 3 (𝜑𝐶 ∈ Cat)
4 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2729 . . 3 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
8 swapfid.i . . 3 𝐼 = (Id‘𝑇)
9 swapfid.y . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
10 swapfid.x . . 3 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10xpcid 18126 . 2 (𝜑 → (𝐼‘⟨𝑌, 𝑋⟩) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
12 df-ov 7372 . . . 4 (𝑋𝑂𝑌) = (𝑂‘⟨𝑋, 𝑌⟩)
13 swapfid.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
1413, 10, 9swapf1 49234 . . . 4 (𝜑 → (𝑋𝑂𝑌) = ⟨𝑌, 𝑋⟩)
1512, 14eqtr3id 2778 . . 3 (𝜑 → (𝑂‘⟨𝑋, 𝑌⟩) = ⟨𝑌, 𝑋⟩)
1615fveq2d 6844 . 2 (𝜑 → (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)) = (𝐼‘⟨𝑌, 𝑋⟩))
17 swapfid.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
18 swapfid.1 . . . . 5 1 = (Id‘𝑆)
1917, 3, 2, 5, 4, 7, 6, 18, 10, 9xpcid 18126 . . . 4 (𝜑 → ( 1 ‘⟨𝑋, 𝑌⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩)
2019fveq2d 6844 . . 3 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩))
21 df-ov 7372 . . . 4 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩)
2221a1i 11 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)⟩))
23 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
245, 23, 7, 3, 10catidcl 17619 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
25 eqid 2729 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
264, 25, 6, 2, 9catidcl 17619 . . . 4 (𝜑 → ((Id‘𝐷)‘𝑌) ∈ (𝑌(Hom ‘𝐷)𝑌))
2713, 10, 9, 10, 9, 24, 26swapf2 49236 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)((Id‘𝐷)‘𝑌)) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
2820, 22, 273eqtr2d 2770 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = ⟨((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)⟩)
2911, 16, 283eqtr4rd 2775 1 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑋, 𝑌⟩)‘( 1 ‘⟨𝑋, 𝑌⟩)) = (𝐼‘(𝑂‘⟨𝑋, 𝑌⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17601  Idccid 17602   ×c cxpc 18105   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-xpc 18109  df-swapf 49222
This theorem is referenced by:  swapfida  49242
  Copyright terms: Public domain W3C validator