| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfid | Structured version Visualization version GIF version | ||
| Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida 49251. (Contributed by Zhi Wang, 8-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| swapfid.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| swapfid.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapfid.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapfid.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapfid.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| swapfid.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| swapfid.1 | ⊢ 1 = (Id‘𝑆) |
| swapfid.i | ⊢ 𝐼 = (Id‘𝑇) |
| Ref | Expression |
|---|---|
| swapfid | ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘( 1 ‘〈𝑋, 𝑌〉)) = (𝐼‘(𝑂‘〈𝑋, 𝑌〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfid.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 2 | swapfid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 3 | swapfid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2730 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | eqid 2730 | . . 3 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | swapfid.i | . . 3 ⊢ 𝐼 = (Id‘𝑇) | |
| 9 | swapfid.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) | |
| 10 | swapfid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | xpcid 18156 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝑋〉) = 〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉) |
| 12 | df-ov 7392 | . . . 4 ⊢ (𝑋𝑂𝑌) = (𝑂‘〈𝑋, 𝑌〉) | |
| 13 | swapfid.o | . . . . 5 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 14 | 13, 10, 9 | swapf1 49243 | . . . 4 ⊢ (𝜑 → (𝑋𝑂𝑌) = 〈𝑌, 𝑋〉) |
| 15 | 12, 14 | eqtr3id 2779 | . . 3 ⊢ (𝜑 → (𝑂‘〈𝑋, 𝑌〉) = 〈𝑌, 𝑋〉) |
| 16 | 15 | fveq2d 6864 | . 2 ⊢ (𝜑 → (𝐼‘(𝑂‘〈𝑋, 𝑌〉)) = (𝐼‘〈𝑌, 𝑋〉)) |
| 17 | swapfid.s | . . . . 5 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 18 | swapfid.1 | . . . . 5 ⊢ 1 = (Id‘𝑆) | |
| 19 | 17, 3, 2, 5, 4, 7, 6, 18, 10, 9 | xpcid 18156 | . . . 4 ⊢ (𝜑 → ( 1 ‘〈𝑋, 𝑌〉) = 〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)〉) |
| 20 | 19 | fveq2d 6864 | . . 3 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘( 1 ‘〈𝑋, 𝑌〉)) = ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)〉)) |
| 21 | df-ov 7392 | . . . 4 ⊢ (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)((Id‘𝐷)‘𝑌)) = ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)〉) | |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)((Id‘𝐷)‘𝑌)) = ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘〈((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑌)〉)) |
| 23 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 24 | 5, 23, 7, 3, 10 | catidcl 17649 | . . . 4 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 25 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 26 | 4, 25, 6, 2, 9 | catidcl 17649 | . . . 4 ⊢ (𝜑 → ((Id‘𝐷)‘𝑌) ∈ (𝑌(Hom ‘𝐷)𝑌)) |
| 27 | 13, 10, 9, 10, 9, 24, 26 | swapf2 49245 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)((Id‘𝐷)‘𝑌)) = 〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉) |
| 28 | 20, 22, 27 | 3eqtr2d 2771 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘( 1 ‘〈𝑋, 𝑌〉)) = 〈((Id‘𝐷)‘𝑌), ((Id‘𝐶)‘𝑋)〉) |
| 29 | 11, 16, 28 | 3eqtr4rd 2776 | 1 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑋, 𝑌〉)‘( 1 ‘〈𝑋, 𝑌〉)) = (𝐼‘(𝑂‘〈𝑋, 𝑌〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 Catccat 17631 Idccid 17632 ×c cxpc 18135 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-xpc 18139 df-swapf 49231 |
| This theorem is referenced by: swapfida 49251 |
| Copyright terms: Public domain | W3C validator |