| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposcurf12 | Structured version Visualization version GIF version | ||
| Description: The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposcurf1.g | ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) |
| tposcurf1.a | ⊢ 𝐴 = (Base‘𝐶) |
| tposcurf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| tposcurf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| tposcurf1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| tposcurf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| tposcurf1.k | ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| tposcurf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| tposcurf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tposcurf12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| tposcurf12.1 | ⊢ 1 = (Id‘𝐶) |
| tposcurf12.y | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| tposcurf12.g | ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| tposcurf12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposcurf1.k | . . . . . 6 ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) | |
| 2 | tposcurf1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) | |
| 3 | 2 | fveq2d 6864 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))) |
| 4 | 3 | fveq1d 6862 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐺)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 5 | 1, 4 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 6 | 5 | fveq2d 6864 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))) |
| 7 | 6 | oveqd 7406 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)) |
| 8 | 7 | fveq1d 6862 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻)) |
| 9 | eqid 2730 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 10 | tposcurf1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 11 | tposcurf1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | tposcurf1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 13 | tposcurf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) | |
| 14 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) = (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 15 | 11, 12, 13, 14 | cofuswapfcl 49264 | . . 3 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 16 | tposcurf1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | tposcurf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2730 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) | |
| 19 | tposcurf11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | tposcurf12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 21 | tposcurf12.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 22 | tposcurf12.y | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | tposcurf12.g | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) | |
| 24 | 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23 | curf12 18194 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻)) |
| 25 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 26 | 10, 25, 21, 11, 17 | catidcl 17649 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 11, 12, 13, 14, 10, 16, 17, 19, 17, 22, 25, 20, 26, 23 | cofuswapf2 49266 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| 28 | 8, 24, 27 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 Catccat 17631 Idccid 17632 Func cfunc 17822 ∘func ccofu 17824 ×c cxpc 18135 curryF ccurf 18177 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-xpc 18139 df-curf 18181 df-swapf 49231 |
| This theorem is referenced by: tposcurf1 49270 |
| Copyright terms: Public domain | W3C validator |