| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposcurf12 | Structured version Visualization version GIF version | ||
| Description: The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposcurf1.g | ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷)))) |
| tposcurf1.a | ⊢ 𝐴 = (Base‘𝐶) |
| tposcurf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| tposcurf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| tposcurf1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| tposcurf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| tposcurf1.k | ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| tposcurf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| tposcurf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tposcurf12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| tposcurf12.1 | ⊢ 1 = (Id‘𝐶) |
| tposcurf12.y | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| tposcurf12.g | ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| tposcurf12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposcurf1.k | . . . . . 6 ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) | |
| 2 | tposcurf1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷)))) | |
| 3 | 2 | fveq2d 6908 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))) |
| 4 | 3 | fveq1d 6906 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐺)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋)) |
| 5 | 1, 4 | eqtrd 2776 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋)) |
| 6 | 5 | fveq2d 6908 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋))) |
| 7 | 6 | oveqd 7446 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋))𝑍)) |
| 8 | 7 | fveq1d 6906 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋))𝑍)‘𝐻)) |
| 9 | eqid 2736 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))) | |
| 10 | tposcurf1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 11 | tposcurf1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | tposcurf1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 13 | tposcurf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) | |
| 14 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) = (𝐹 ∘func (𝐶swapF𝐷))) | |
| 15 | 11, 12, 13, 14 | cofuswapfcl 48966 | . . 3 ⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 16 | tposcurf1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | tposcurf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2736 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋) | |
| 19 | tposcurf11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | tposcurf12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 21 | tposcurf12.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 22 | tposcurf12.y | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | tposcurf12.g | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) | |
| 24 | 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23 | curf12 18268 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶swapF𝐷))))‘𝑋))𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶swapF𝐷)))〈𝑋, 𝑍〉)𝐻)) |
| 25 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 26 | 10, 25, 21, 11, 17 | catidcl 17721 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 11, 12, 13, 14, 10, 16, 17, 19, 17, 22, 25, 20, 26, 23 | cofuswapf2 48968 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶swapF𝐷)))〈𝑋, 𝑍〉)𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| 28 | 8, 24, 27 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4630 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 Basecbs 17243 Hom chom 17304 Catccat 17703 Idccid 17704 Func cfunc 17895 ∘func ccofu 17897 ×c cxpc 18209 curryF ccurf 18251 swapFcswapf 48938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-map 8864 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-cat 17707 df-cid 17708 df-func 17899 df-cofu 17901 df-xpc 18213 df-curf 18255 df-swapf 48939 |
| This theorem is referenced by: tposcurf1 48972 |
| Copyright terms: Public domain | W3C validator |