| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposcurf12 | Structured version Visualization version GIF version | ||
| Description: The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposcurf1.g | ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) |
| tposcurf1.a | ⊢ 𝐴 = (Base‘𝐶) |
| tposcurf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| tposcurf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| tposcurf1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| tposcurf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| tposcurf1.k | ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| tposcurf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| tposcurf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tposcurf12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| tposcurf12.1 | ⊢ 1 = (Id‘𝐶) |
| tposcurf12.y | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| tposcurf12.g | ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| tposcurf12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposcurf1.k | . . . . . 6 ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) | |
| 2 | tposcurf1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) | |
| 3 | 2 | fveq2d 6826 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))) |
| 4 | 3 | fveq1d 6824 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐺)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 5 | 1, 4 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 6 | 5 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))) |
| 7 | 6 | oveqd 7366 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)) |
| 8 | 7 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻)) |
| 9 | eqid 2729 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 10 | tposcurf1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 11 | tposcurf1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | tposcurf1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 13 | tposcurf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) | |
| 14 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) = (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 15 | 11, 12, 13, 14 | cofuswapfcl 49278 | . . 3 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 16 | tposcurf1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | tposcurf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2729 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) | |
| 19 | tposcurf11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | tposcurf12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 21 | tposcurf12.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 22 | tposcurf12.y | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | tposcurf12.g | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) | |
| 24 | 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23 | curf12 18133 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻)) |
| 25 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 26 | 10, 25, 21, 11, 17 | catidcl 17588 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 11, 12, 13, 14, 10, 16, 17, 19, 17, 22, 25, 20, 26, 23 | cofuswapf2 49280 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| 28 | 8, 24, 27 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 Basecbs 17120 Hom chom 17172 Catccat 17570 Idccid 17571 Func cfunc 17761 ∘func ccofu 17763 ×c cxpc 18074 curryF ccurf 18116 swapF cswapf 49244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-func 17765 df-cofu 17767 df-xpc 18078 df-curf 18120 df-swapf 49245 |
| This theorem is referenced by: tposcurf1 49284 |
| Copyright terms: Public domain | W3C validator |