| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposcurf12 | Structured version Visualization version GIF version | ||
| Description: The partially evaluated transposed curry functor at a morphism. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposcurf1.g | ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) |
| tposcurf1.a | ⊢ 𝐴 = (Base‘𝐶) |
| tposcurf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| tposcurf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| tposcurf1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| tposcurf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| tposcurf1.k | ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| tposcurf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| tposcurf11.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| tposcurf12.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| tposcurf12.1 | ⊢ 1 = (Id‘𝐶) |
| tposcurf12.y | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| tposcurf12.g | ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
| Ref | Expression |
|---|---|
| tposcurf12 | ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposcurf1.k | . . . . . 6 ⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) | |
| 2 | tposcurf1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷)))) | |
| 3 | 2 | fveq2d 6821 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))) |
| 4 | 3 | fveq1d 6819 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐺)‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 5 | 1, 4 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋)) |
| 6 | 5 | fveq2d 6821 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐾) = (2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))) |
| 7 | 6 | oveqd 7358 | . . 3 ⊢ (𝜑 → (𝑌(2nd ‘𝐾)𝑍) = (𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)) |
| 8 | 7 | fveq1d 6819 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻)) |
| 9 | eqid 2731 | . . 3 ⊢ (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 10 | tposcurf1.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 11 | tposcurf1.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 12 | tposcurf1.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 13 | tposcurf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) | |
| 14 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) = (𝐹 ∘func (𝐶 swapF 𝐷))) | |
| 15 | 11, 12, 13, 14 | cofuswapfcl 49325 | . . 3 ⊢ (𝜑 → (𝐹 ∘func (𝐶 swapF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 16 | tposcurf1.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 17 | tposcurf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | eqid 2731 | . . 3 ⊢ ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋) | |
| 19 | tposcurf11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 20 | tposcurf12.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 21 | tposcurf12.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 22 | tposcurf12.y | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 23 | tposcurf12.g | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) | |
| 24 | 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23 | curf12 18128 | . 2 ⊢ (𝜑 → ((𝑌(2nd ‘((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func (𝐶 swapF 𝐷))))‘𝑋))𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻)) |
| 25 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 26 | 10, 25, 21, 11, 17 | catidcl 17583 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋)) |
| 27 | 11, 12, 13, 14, 10, 16, 17, 19, 17, 22, 25, 20, 26, 23 | cofuswapf2 49327 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘(𝐹 ∘func (𝐶 swapF 𝐷)))〈𝑋, 𝑍〉)𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| 28 | 8, 24, 27 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (𝐻(〈𝑌, 𝑋〉(2nd ‘𝐹)〈𝑍, 𝑋〉)( 1 ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4577 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 Hom chom 17167 Catccat 17565 Idccid 17566 Func cfunc 17756 ∘func ccofu 17758 ×c cxpc 18069 curryF ccurf 18111 swapF cswapf 49291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-func 17760 df-cofu 17762 df-xpc 18073 df-curf 18115 df-swapf 49292 |
| This theorem is referenced by: tposcurf1 49331 |
| Copyright terms: Public domain | W3C validator |