Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cau3 | Structured version Visualization version GIF version |
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 14985 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
Ref | Expression |
---|---|
cau3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
cau3 | ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cau3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzssz 12532 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
3 | 1, 2 | eqsstri 3951 | . . 3 ⊢ 𝑍 ⊆ ℤ |
4 | id 22 | . . 3 ⊢ ((𝐹‘𝑘) ∈ ℂ → (𝐹‘𝑘) ∈ ℂ) | |
5 | eleq1 2826 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) | |
6 | eleq1 2826 | . . 3 ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) | |
7 | abssub 14966 | . . . 4 ⊢ (((𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
8 | 7 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑗) ∈ ℂ ∧ (𝐹‘𝑘) ∈ ℂ) → (abs‘((𝐹‘𝑗) − (𝐹‘𝑘))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
9 | abssub 14966 | . . . 4 ⊢ (((𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) | |
10 | 9 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝐹‘𝑚) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑚)))) |
11 | abs3lem 14978 | . . . 4 ⊢ ((((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | |
12 | 11 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑚) ∈ ℂ) ∧ ((𝐹‘𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑚))) < (𝑥 / 2)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
13 | 3, 4, 5, 6, 8, 10, 12 | cau3lem 14994 | . 2 ⊢ (⊤ → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
14 | 13 | mptru 1546 | 1 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 < clt 10940 − cmin 11135 / cdiv 11562 2c2 11958 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: cau4 14996 serf0 15320 |
Copyright terms: Public domain | W3C validator |