MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cau3 Structured version   Visualization version   GIF version

Theorem cau3 15301
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15291 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
cau3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑚)   𝑍(𝑚)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4 𝑍 = (ℤ𝑀)
2 uzssz 12842 . . . 4 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 4016 . . 3 𝑍 ⊆ ℤ
4 id 22 . . 3 ((𝐹𝑘) ∈ ℂ → (𝐹𝑘) ∈ ℂ)
5 eleq1 2821 . . 3 ((𝐹𝑘) = (𝐹𝑗) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
6 eleq1 2821 . . 3 ((𝐹𝑘) = (𝐹𝑚) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
7 abssub 15272 . . . 4 (((𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
873adant1 1130 . . 3 ((⊤ ∧ (𝐹𝑗) ∈ ℂ ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑗) − (𝐹𝑘))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
9 abssub 15272 . . . 4 (((𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
1093adant1 1130 . . 3 ((⊤ ∧ (𝐹𝑚) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑚))))
11 abs3lem 15284 . . . 4 ((((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
12113adant1 1130 . . 3 ((⊤ ∧ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑚) ∈ ℂ) ∧ ((𝐹𝑗) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘((𝐹𝑘) − (𝐹𝑗))) < (𝑥 / 2) ∧ (abs‘((𝐹𝑗) − (𝐹𝑚))) < (𝑥 / 2)) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
133, 4, 5, 6, 8, 10, 12cau3lem 15300 . 2 (⊤ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
1413mptru 1548 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wral 3061  wrex 3070   class class class wbr 5148  cfv 6543  (class class class)co 7408  cc 11107  cr 11108   < clt 11247  cmin 11443   / cdiv 11870  2c2 12266  cz 12557  cuz 12821  +crp 12973  abscabs 15180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182
This theorem is referenced by:  cau4  15302  serf0  15626
  Copyright terms: Public domain W3C validator