Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqvald | Structured version Visualization version GIF version |
Description: Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
sqvald | ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqval 13763 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 2c2 11958 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: sqoddm1div8 13886 cjmulval 14784 sqrlem5 14886 sqrlem6 14887 sqrlem7 14888 remsqsqrt 14896 sqrtmsq 14910 absid 14936 absre 14941 absresq 14942 abs1m 14975 abslem2 14979 sqreulem 14999 msqsqrtd 15080 tanval3 15771 sincossq 15813 cos2t 15815 sqrt2irrlem 15885 sqnprm 16335 isprm5 16340 prmdvdssqOLD 16352 coprimeprodsq 16437 pockthg 16535 4sqlem7 16573 4sqlem10 16576 mul4sqlem 16582 4sqlem12 16585 4sqlem15 16588 4sqlem16 16589 4sqlem17 16590 odadd2 19365 abvneg 20009 zringunit 20600 cphsubrglem 24246 rrxnm 24460 pjthlem1 24506 itgabs 24904 dvrec 25024 dvmptdiv 25043 dveflem 25048 tangtx 25567 tanregt0 25600 tanarg 25679 cxpsqrt 25763 lawcoslem1 25870 chordthmlem4 25890 heron 25893 quad2 25894 dcubic1lem 25898 dcubic1 25900 dcubic 25901 cubic2 25903 binom4 25905 dquartlem1 25906 dquartlem2 25907 dquart 25908 quart1lem 25910 asinsin 25947 cxp2limlem 26030 lgamgulmlem3 26085 wilthlem1 26122 basellem8 26142 chpub 26273 bposlem2 26338 lgssq 26390 lgssq2 26391 lgsquad3 26440 2sqlem3 26473 2sqlem8 26479 2sqmod 26489 chtppilimlem1 26526 rplogsumlem2 26538 dchrisum0lem1a 26539 dchrisum0lem1 26569 dchrisum0lem3 26572 mulog2sumlem1 26587 vmalogdivsum2 26591 logsqvma 26595 logdivbnd 26609 pntpbnd1a 26638 pntlemr 26655 pntlemf 26658 pntlemk 26659 pntlemo 26660 brbtwn2 27176 colinearalglem4 27180 htthlem 29180 pjhthlem1 29654 cnlnadjlem7 30336 branmfn 30368 leopnmid 30401 hgt750lemf 32533 hgt750leme 32538 dvtan 35754 itgabsnc 35773 ftc1anclem3 35779 areacirclem1 35792 3lexlogpow2ineq2 39995 3cubeslem1 40422 3cubeslem2 40423 3cubeslem3l 40424 irrapxlem5 40564 pellexlem2 40568 pellexlem6 40572 rmxdbl 40677 jm2.18 40726 jm2.19lem1 40727 jm2.20nn 40735 jm2.25 40737 jm2.27c 40745 jm3.1lem2 40756 int-sqdefd 41681 int-sqgeq0d 41686 sqrlearg 42981 dvdivf 43353 wallispi2lem1 43502 stirlinglem1 43505 stirlinglem3 43507 stirlinglem10 43514 smfmullem1 44212 fmtnorec2lem 44882 fmtnorec3 44888 modexp2m1d 44952 itschlc0yqe 45994 itscnhlc0xyqsol 45999 itschlc0xyqsol1 46000 itschlc0xyqsol 46001 itsclc0xyqsolr 46003 |
Copyright terms: Public domain | W3C validator |