Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqvald | Structured version Visualization version GIF version |
Description: Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
sqvald | ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqval 13833 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 · cmul 10877 2c2 12028 ↑cexp 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-seq 13720 df-exp 13781 |
This theorem is referenced by: sqoddm1div8 13956 cjmulval 14854 sqrlem5 14956 sqrlem6 14957 sqrlem7 14958 remsqsqrt 14966 sqrtmsq 14980 absid 15006 absre 15011 absresq 15012 abs1m 15045 abslem2 15049 sqreulem 15069 msqsqrtd 15150 tanval3 15841 sincossq 15883 cos2t 15885 sqrt2irrlem 15955 sqnprm 16405 isprm5 16410 prmdvdssqOLD 16422 coprimeprodsq 16507 pockthg 16605 4sqlem7 16643 4sqlem10 16646 mul4sqlem 16652 4sqlem12 16655 4sqlem15 16658 4sqlem16 16659 4sqlem17 16660 odadd2 19448 abvneg 20092 zringunit 20686 cphsubrglem 24339 rrxnm 24553 pjthlem1 24599 itgabs 24997 dvrec 25117 dvmptdiv 25136 dveflem 25141 tangtx 25660 tanregt0 25693 tanarg 25772 cxpsqrt 25856 lawcoslem1 25963 chordthmlem4 25983 heron 25986 quad2 25987 dcubic1lem 25991 dcubic1 25993 dcubic 25994 cubic2 25996 binom4 25998 dquartlem1 25999 dquartlem2 26000 dquart 26001 quart1lem 26003 asinsin 26040 cxp2limlem 26123 lgamgulmlem3 26178 wilthlem1 26215 basellem8 26235 chpub 26366 bposlem2 26431 lgssq 26483 lgssq2 26484 lgsquad3 26533 2sqlem3 26566 2sqlem8 26572 2sqmod 26582 chtppilimlem1 26619 rplogsumlem2 26631 dchrisum0lem1a 26632 dchrisum0lem1 26662 dchrisum0lem3 26665 mulog2sumlem1 26680 vmalogdivsum2 26684 logsqvma 26688 logdivbnd 26702 pntpbnd1a 26731 pntlemr 26748 pntlemf 26751 pntlemk 26752 pntlemo 26753 brbtwn2 27271 colinearalglem4 27275 htthlem 29275 pjhthlem1 29749 cnlnadjlem7 30431 branmfn 30463 leopnmid 30496 hgt750lemf 32629 hgt750leme 32634 dvtan 35823 itgabsnc 35842 ftc1anclem3 35848 areacirclem1 35861 3lexlogpow2ineq2 40064 3cubeslem1 40503 3cubeslem2 40504 3cubeslem3l 40505 irrapxlem5 40645 pellexlem2 40649 pellexlem6 40653 rmxdbl 40758 jm2.18 40807 jm2.19lem1 40808 jm2.20nn 40816 jm2.25 40818 jm2.27c 40826 jm3.1lem2 40837 int-sqdefd 41762 int-sqgeq0d 41767 sqrlearg 43062 dvdivf 43434 wallispi2lem1 43583 stirlinglem1 43586 stirlinglem3 43588 stirlinglem10 43595 smfmullem1 44293 fmtnorec2lem 44963 fmtnorec3 44969 modexp2m1d 45033 itschlc0yqe 46075 itscnhlc0xyqsol 46080 itschlc0xyqsol1 46081 itschlc0xyqsol 46082 itsclc0xyqsolr 46084 |
Copyright terms: Public domain | W3C validator |