| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec0h | Structured version Visualization version GIF version | ||
| Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| dec0u.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| dec0h | ⊢ 𝐴 = ;0𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12643 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | dec0u.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | num0h 12637 | . 2 ⊢ 𝐴 = ((;10 · 0) + 𝐴) |
| 4 | dfdec10 12628 | . 2 ⊢ ;0𝐴 = ((;10 · 0) + 𝐴) | |
| 5 | 3, 4 | eqtr4i 2755 | 1 ⊢ 𝐴 = ;0𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ℕ0cn0 12418 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 |
| This theorem is referenced by: declei 12661 decrmanc 12682 decrmac 12683 decaddi 12685 decaddci 12686 decmulnc 12692 dec5dvds2 17012 2exp16 17037 37prm 17067 43prm 17068 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 log2ublem3 26834 log2ub 26835 1mhdrd 32809 hgt750lem2 34616 12gcd5e1 41964 60gcd7e1 41966 420gcd8e4 41967 60lcm7e420 41971 420lcm8e840 41972 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1 42037 ex-decpmul 42267 wallispi2lem2 46043 139prmALT 47570 127prm 47573 nfermltl2rev 47717 |
| Copyright terms: Public domain | W3C validator |