| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version | ||
| Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | rpexpcl 13979 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 (class class class)co 7341 ℤcz 12460 ℝ+crp 12882 ↑cexp 13960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 |
| This theorem is referenced by: bitsfzolem 16337 bitsfzo 16338 bitsmod 16339 bitsinv1 16345 sadasslem 16373 sadeq 16375 plyeq0lem 26135 aalioulem4 26263 aalioulem5 26264 aalioulem6 26265 aaliou 26266 aaliou3lem8 26273 nnlogbexp 26711 lgamgulmlem3 26961 ftalem5 27007 basellem3 27013 2sqmod 27367 rplogsumlem2 27416 rpvmasumlem 27418 pntlemh 27530 pntlemq 27532 pntlemr 27533 pntlemj 27534 pntlemf 27536 padicabv 27561 ostth2lem3 27566 dya2ub 34273 dya2iocress 34277 dya2iocbrsiga 34278 dya2icobrsiga 34279 sxbrsigalem2 34289 omssubadd 34303 signsply0 34554 hgt750leme 34661 tgoldbachgtde 34663 faclim 35758 iprodfac 35759 knoppndvlem17 36541 knoppndvlem18 36542 geomcau 37778 lcmineqlem21 42061 3lexlogpow5ineq5 42072 aks4d1p1p7 42086 aks4d1p1 42088 aks4d1p8d2 42097 aks4d1p8 42099 fltltc 42673 fltnlta 42675 pellfund14 42910 dvdivbd 45940 stirlinglem1 46091 stirlinglem2 46092 stirlinglem4 46094 stirlinglem8 46098 stirlinglem10 46100 stirlinglem11 46101 stirlinglem13 46103 stirlinglem15 46105 stirlingr 46107 sge0ad2en 46448 ovnsubaddlem1 46587 fllog2 48579 dignn0flhalflem1 48626 dignn0flhalflem2 48627 |
| Copyright terms: Public domain | W3C validator |