MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcld Structured version   Visualization version   GIF version

Theorem rpexpcld 14210
Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpexpcld.1 (𝜑𝐴 ∈ ℝ+)
rpexpcld.2 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
rpexpcld (𝜑 → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcld
StepHypRef Expression
1 rpexpcld.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpexpcld.2 . 2 (𝜑𝑁 ∈ ℤ)
3 rpexpcl 14046 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
41, 2, 3syl2anc 585 1 (𝜑 → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  (class class class)co 7409  cz 12558  +crp 12974  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028
This theorem is referenced by:  bitsfzolem  16375  bitsfzo  16376  bitsmod  16377  bitsinv1  16383  sadasslem  16411  sadeq  16413  plyeq0lem  25724  aalioulem4  25848  aalioulem5  25849  aalioulem6  25850  aaliou  25851  aaliou3lem8  25858  nnlogbexp  26286  lgamgulmlem3  26535  ftalem5  26581  basellem3  26587  2sqmod  26939  rplogsumlem2  26988  rpvmasumlem  26990  pntlemh  27102  pntlemq  27104  pntlemr  27105  pntlemj  27106  pntlemf  27108  padicabv  27133  ostth2lem3  27138  dya2ub  33269  dya2iocress  33273  dya2iocbrsiga  33274  dya2icobrsiga  33275  sxbrsigalem2  33285  omssubadd  33299  signsply0  33562  hgt750leme  33670  tgoldbachgtde  33672  faclim  34716  iprodfac  34717  knoppndvlem17  35404  knoppndvlem18  35405  geomcau  36627  lcmineqlem21  40914  3lexlogpow5ineq5  40925  aks4d1p1p7  40939  aks4d1p1  40941  aks4d1p8d2  40950  aks4d1p8  40952  fltltc  41403  fltnlta  41405  pellfund14  41636  dvdivbd  44639  stirlinglem1  44790  stirlinglem2  44791  stirlinglem4  44793  stirlinglem8  44797  stirlinglem10  44799  stirlinglem11  44800  stirlinglem13  44802  stirlinglem15  44804  stirlingr  44806  sge0ad2en  45147  ovnsubaddlem1  45286  fllog2  47254  dignn0flhalflem1  47301  dignn0flhalflem2  47302
  Copyright terms: Public domain W3C validator