Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version |
Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | rpexpcl 13801 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7275 ℤcz 12319 ℝ+crp 12730 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 |
This theorem is referenced by: bitsfzolem 16141 bitsfzo 16142 bitsmod 16143 bitsinv1 16149 sadasslem 16177 sadeq 16179 plyeq0lem 25371 aalioulem4 25495 aalioulem5 25496 aalioulem6 25497 aaliou 25498 aaliou3lem8 25505 nnlogbexp 25931 lgamgulmlem3 26180 ftalem5 26226 basellem3 26232 2sqmod 26584 rplogsumlem2 26633 rpvmasumlem 26635 pntlemh 26747 pntlemq 26749 pntlemr 26750 pntlemj 26751 pntlemf 26753 padicabv 26778 ostth2lem3 26783 dya2ub 32237 dya2iocress 32241 dya2iocbrsiga 32242 dya2icobrsiga 32243 sxbrsigalem2 32253 omssubadd 32267 signsply0 32530 hgt750leme 32638 tgoldbachgtde 32640 faclim 33712 iprodfac 33713 knoppndvlem17 34708 knoppndvlem18 34709 geomcau 35917 lcmineqlem21 40057 3lexlogpow5ineq5 40068 aks4d1p1p7 40082 aks4d1p1 40084 aks4d1p8d2 40093 aks4d1p8 40095 fltltc 40498 fltnlta 40500 pellfund14 40720 dvdivbd 43464 stirlinglem1 43615 stirlinglem2 43616 stirlinglem4 43618 stirlinglem8 43622 stirlinglem10 43624 stirlinglem11 43625 stirlinglem13 43627 stirlinglem15 43629 stirlingr 43631 sge0ad2en 43969 ovnsubaddlem1 44108 fllog2 45914 dignn0flhalflem1 45961 dignn0flhalflem2 45962 |
Copyright terms: Public domain | W3C validator |