Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version |
Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | rpexpcl 13811 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7267 ℤcz 12329 ℝ+crp 12740 ↑cexp 13792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-seq 13732 df-exp 13793 |
This theorem is referenced by: bitsfzolem 16151 bitsfzo 16152 bitsmod 16153 bitsinv1 16159 sadasslem 16187 sadeq 16189 plyeq0lem 25381 aalioulem4 25505 aalioulem5 25506 aalioulem6 25507 aaliou 25508 aaliou3lem8 25515 nnlogbexp 25941 lgamgulmlem3 26190 ftalem5 26236 basellem3 26242 2sqmod 26594 rplogsumlem2 26643 rpvmasumlem 26645 pntlemh 26757 pntlemq 26759 pntlemr 26760 pntlemj 26761 pntlemf 26763 padicabv 26788 ostth2lem3 26793 dya2ub 32245 dya2iocress 32249 dya2iocbrsiga 32250 dya2icobrsiga 32251 sxbrsigalem2 32261 omssubadd 32275 signsply0 32538 hgt750leme 32646 tgoldbachgtde 32648 faclim 33720 iprodfac 33721 knoppndvlem17 34716 knoppndvlem18 34717 geomcau 35925 lcmineqlem21 40065 3lexlogpow5ineq5 40076 aks4d1p1p7 40090 aks4d1p1 40092 aks4d1p8d2 40101 aks4d1p8 40103 fltltc 40506 fltnlta 40508 pellfund14 40728 dvdivbd 43445 stirlinglem1 43596 stirlinglem2 43597 stirlinglem4 43599 stirlinglem8 43603 stirlinglem10 43605 stirlinglem11 43606 stirlinglem13 43608 stirlinglem15 43610 stirlingr 43612 sge0ad2en 43950 ovnsubaddlem1 44089 fllog2 45892 dignn0flhalflem1 45939 dignn0flhalflem2 45940 |
Copyright terms: Public domain | W3C validator |