MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcld Structured version   Visualization version   GIF version

Theorem rpexpcld 13890
Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpexpcld.1 (𝜑𝐴 ∈ ℝ+)
rpexpcld.2 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
rpexpcld (𝜑 → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcld
StepHypRef Expression
1 rpexpcld.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpexpcld.2 . 2 (𝜑𝑁 ∈ ℤ)
3 rpexpcl 13729 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  (class class class)co 7255  cz 12249  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711
This theorem is referenced by:  bitsfzolem  16069  bitsfzo  16070  bitsmod  16071  bitsinv1  16077  sadasslem  16105  sadeq  16107  plyeq0lem  25276  aalioulem4  25400  aalioulem5  25401  aalioulem6  25402  aaliou  25403  aaliou3lem8  25410  nnlogbexp  25836  lgamgulmlem3  26085  ftalem5  26131  basellem3  26137  2sqmod  26489  rplogsumlem2  26538  rpvmasumlem  26540  pntlemh  26652  pntlemq  26654  pntlemr  26655  pntlemj  26656  pntlemf  26658  padicabv  26683  ostth2lem3  26688  dya2ub  32137  dya2iocress  32141  dya2iocbrsiga  32142  dya2icobrsiga  32143  sxbrsigalem2  32153  omssubadd  32167  signsply0  32430  hgt750leme  32538  tgoldbachgtde  32540  faclim  33618  iprodfac  33619  knoppndvlem17  34635  knoppndvlem18  34636  geomcau  35844  lcmineqlem21  39985  3lexlogpow5ineq5  39996  aks4d1p1p7  40010  aks4d1p1  40012  aks4d1p8d2  40021  aks4d1p8  40023  fltltc  40414  fltnlta  40416  pellfund14  40636  dvdivbd  43354  stirlinglem1  43505  stirlinglem2  43506  stirlinglem4  43508  stirlinglem8  43512  stirlinglem10  43514  stirlinglem11  43515  stirlinglem13  43517  stirlinglem15  43519  stirlingr  43521  sge0ad2en  43859  ovnsubaddlem1  43998  fllog2  45802  dignn0flhalflem1  45849  dignn0flhalflem2  45850
  Copyright terms: Public domain W3C validator