| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version | ||
| Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | rpexpcl 14045 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 ℤcz 12529 ℝ+crp 12951 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: bitsfzolem 16404 bitsfzo 16405 bitsmod 16406 bitsinv1 16412 sadasslem 16440 sadeq 16442 plyeq0lem 26115 aalioulem4 26243 aalioulem5 26244 aalioulem6 26245 aaliou 26246 aaliou3lem8 26253 nnlogbexp 26691 lgamgulmlem3 26941 ftalem5 26987 basellem3 26993 2sqmod 27347 rplogsumlem2 27396 rpvmasumlem 27398 pntlemh 27510 pntlemq 27512 pntlemr 27513 pntlemj 27514 pntlemf 27516 padicabv 27541 ostth2lem3 27546 dya2ub 34261 dya2iocress 34265 dya2iocbrsiga 34266 dya2icobrsiga 34267 sxbrsigalem2 34277 omssubadd 34291 signsply0 34542 hgt750leme 34649 tgoldbachgtde 34651 faclim 35733 iprodfac 35734 knoppndvlem17 36516 knoppndvlem18 36517 geomcau 37753 lcmineqlem21 42037 3lexlogpow5ineq5 42048 aks4d1p1p7 42062 aks4d1p1 42064 aks4d1p8d2 42073 aks4d1p8 42075 fltltc 42649 fltnlta 42651 pellfund14 42886 dvdivbd 45921 stirlinglem1 46072 stirlinglem2 46073 stirlinglem4 46075 stirlinglem8 46079 stirlinglem10 46081 stirlinglem11 46082 stirlinglem13 46084 stirlinglem15 46086 stirlingr 46088 sge0ad2en 46429 ovnsubaddlem1 46568 fllog2 48557 dignn0flhalflem1 48604 dignn0flhalflem2 48605 |
| Copyright terms: Public domain | W3C validator |