| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version | ||
| Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | rpexpcl 13997 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 ℤcz 12478 ℝ+crp 12900 ↑cexp 13978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-seq 13919 df-exp 13979 |
| This theorem is referenced by: bitsfzolem 16355 bitsfzo 16356 bitsmod 16357 bitsinv1 16363 sadasslem 16391 sadeq 16393 plyeq0lem 26152 aalioulem4 26280 aalioulem5 26281 aalioulem6 26282 aaliou 26283 aaliou3lem8 26290 nnlogbexp 26728 lgamgulmlem3 26978 ftalem5 27024 basellem3 27030 2sqmod 27384 rplogsumlem2 27433 rpvmasumlem 27435 pntlemh 27547 pntlemq 27549 pntlemr 27550 pntlemj 27551 pntlemf 27553 padicabv 27578 ostth2lem3 27583 dya2ub 34294 dya2iocress 34298 dya2iocbrsiga 34299 dya2icobrsiga 34300 sxbrsigalem2 34310 omssubadd 34324 signsply0 34575 hgt750leme 34682 tgoldbachgtde 34684 faclim 35801 iprodfac 35802 knoppndvlem17 36583 knoppndvlem18 36584 geomcau 37809 lcmineqlem21 42152 3lexlogpow5ineq5 42163 aks4d1p1p7 42177 aks4d1p1 42179 aks4d1p8d2 42188 aks4d1p8 42190 fltltc 42769 fltnlta 42771 pellfund14 43005 dvdivbd 46035 stirlinglem1 46186 stirlinglem2 46187 stirlinglem4 46189 stirlinglem8 46193 stirlinglem10 46195 stirlinglem11 46196 stirlinglem13 46198 stirlinglem15 46200 stirlingr 46202 sge0ad2en 46543 ovnsubaddlem1 46682 fllog2 48683 dignn0flhalflem1 48730 dignn0flhalflem2 48731 |
| Copyright terms: Public domain | W3C validator |