MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexpcld Structured version   Visualization version   GIF version

Theorem rpexpcld 13613
Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpexpcld.1 (𝜑𝐴 ∈ ℝ+)
rpexpcld.2 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
rpexpcld (𝜑 → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem rpexpcld
StepHypRef Expression
1 rpexpcld.1 . 2 (𝜑𝐴 ∈ ℝ+)
2 rpexpcld.2 . 2 (𝜑𝑁 ∈ ℤ)
3 rpexpcl 13453 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
41, 2, 3syl2anc 587 1 (𝜑 → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2115  (class class class)co 7149  cz 11978  +crp 12386  cexp 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-seq 13374  df-exp 13435
This theorem is referenced by:  bitsfzolem  15781  bitsfzo  15782  bitsmod  15783  bitsinv1  15789  sadasslem  15817  sadeq  15819  plyeq0lem  24810  aalioulem4  24934  aalioulem5  24935  aalioulem6  24936  aaliou  24937  aaliou3lem8  24944  nnlogbexp  25370  lgamgulmlem3  25619  ftalem5  25665  basellem3  25671  2sqmod  26023  rplogsumlem2  26072  rpvmasumlem  26074  pntlemh  26186  pntlemq  26188  pntlemr  26189  pntlemj  26190  pntlemf  26192  padicabv  26217  ostth2lem3  26222  dya2ub  31585  dya2iocress  31589  dya2iocbrsiga  31590  dya2icobrsiga  31591  sxbrsigalem2  31601  omssubadd  31615  signsply0  31878  hgt750leme  31986  tgoldbachgtde  31988  faclim  33035  iprodfac  33036  knoppndvlem17  33924  knoppndvlem18  33925  geomcau  35142  lcmineqlem21  39285  fltltc  39533  fltnlta  39535  pellfund14  39755  dvdivbd  42491  stirlinglem1  42642  stirlinglem2  42643  stirlinglem4  42645  stirlinglem8  42649  stirlinglem10  42651  stirlinglem11  42652  stirlinglem13  42654  stirlinglem15  42656  stirlingr  42658  sge0ad2en  42996  ovnsubaddlem1  43135  fllog2  44908  dignn0flhalflem1  44955  dignn0flhalflem2  44956
  Copyright terms: Public domain W3C validator