| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpexpcld | Structured version Visualization version GIF version | ||
| Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| rpexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| rpexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | rpexpcl 14052 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 ℤcz 12536 ℝ+crp 12958 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: bitsfzolem 16411 bitsfzo 16412 bitsmod 16413 bitsinv1 16419 sadasslem 16447 sadeq 16449 plyeq0lem 26122 aalioulem4 26250 aalioulem5 26251 aalioulem6 26252 aaliou 26253 aaliou3lem8 26260 nnlogbexp 26698 lgamgulmlem3 26948 ftalem5 26994 basellem3 27000 2sqmod 27354 rplogsumlem2 27403 rpvmasumlem 27405 pntlemh 27517 pntlemq 27519 pntlemr 27520 pntlemj 27521 pntlemf 27523 padicabv 27548 ostth2lem3 27553 dya2ub 34268 dya2iocress 34272 dya2iocbrsiga 34273 dya2icobrsiga 34274 sxbrsigalem2 34284 omssubadd 34298 signsply0 34549 hgt750leme 34656 tgoldbachgtde 34658 faclim 35740 iprodfac 35741 knoppndvlem17 36523 knoppndvlem18 36524 geomcau 37760 lcmineqlem21 42044 3lexlogpow5ineq5 42055 aks4d1p1p7 42069 aks4d1p1 42071 aks4d1p8d2 42080 aks4d1p8 42082 fltltc 42656 fltnlta 42658 pellfund14 42893 dvdivbd 45928 stirlinglem1 46079 stirlinglem2 46080 stirlinglem4 46082 stirlinglem8 46086 stirlinglem10 46088 stirlinglem11 46089 stirlinglem13 46091 stirlinglem15 46093 stirlingr 46095 sge0ad2en 46436 ovnsubaddlem1 46575 fllog2 48561 dignn0flhalflem1 48608 dignn0flhalflem2 48609 |
| Copyright terms: Public domain | W3C validator |