![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex2hbas | Structured version Visualization version GIF version |
Description: The halving functions 𝐻 are endofunctions on ℕ0. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
smndex2dbas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex2dbas.b | ⊢ 𝐵 = (Base‘𝑀) |
smndex2dbas.0 | ⊢ 0 = (0g‘𝑀) |
smndex2dbas.d | ⊢ 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥)) |
smndex2hbas.n | ⊢ 𝑁 ∈ ℕ0 |
smndex2hbas.h | ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) |
Ref | Expression |
---|---|
smndex2hbas | ⊢ 𝐻 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex2hbas.h | . . 3 ⊢ 𝐻 = (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) | |
2 | nn0ehalf 16375 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 2 ∥ 𝑥) → (𝑥 / 2) ∈ ℕ0) | |
3 | smndex2hbas.n | . . . . 5 ⊢ 𝑁 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑥) → 𝑁 ∈ ℕ0) |
5 | 2, 4 | ifclda 4558 | . . 3 ⊢ (𝑥 ∈ ℕ0 → if(2 ∥ 𝑥, (𝑥 / 2), 𝑁) ∈ ℕ0) |
6 | 1, 5 | fmpti 7118 | . 2 ⊢ 𝐻:ℕ0⟶ℕ0 |
7 | nn0ex 12524 | . . . . 5 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 7232 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ if(2 ∥ 𝑥, (𝑥 / 2), 𝑁)) ∈ V |
9 | 1, 8 | eqeltri 2822 | . . 3 ⊢ 𝐻 ∈ V |
10 | smndex2dbas.m | . . . 4 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
11 | smndex2dbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | 10, 11 | elefmndbas2 18859 | . . 3 ⊢ (𝐻 ∈ V → (𝐻 ∈ 𝐵 ↔ 𝐻:ℕ0⟶ℕ0)) |
13 | 9, 12 | ax-mp 5 | . 2 ⊢ (𝐻 ∈ 𝐵 ↔ 𝐻:ℕ0⟶ℕ0) |
14 | 6, 13 | mpbir 230 | 1 ⊢ 𝐻 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ifcif 4523 class class class wbr 5145 ↦ cmpt 5228 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 · cmul 11154 / cdiv 11912 2c2 12313 ℕ0cn0 12518 ∥ cdvds 16251 Basecbs 17208 0gc0g 17449 EndoFMndcefmnd 18853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-fz 13533 df-dvds 16252 df-struct 17144 df-slot 17179 df-ndx 17191 df-base 17209 df-plusg 17274 df-tset 17280 df-efmnd 18854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |