MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmodlteqALT Structured version   Visualization version   GIF version

Theorem addmodlteqALT 16141
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 13779 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addmodlteqALT ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))

Proof of Theorem addmodlteqALT
StepHypRef Expression
1 elfzo0 13541 . . . . 5 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzoelz 13500 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
3 simplrr 776 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℕ)
4 nn0z 12456 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
54ad2antrl 726 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℤ)
6 zaddcl 12473 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ)
75, 6sylan 580 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ)
8 zaddcl 12473 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ)
98adantlr 713 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ)
103, 7, 93jca 1128 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))
1110exp31 420 . . . . . . . 8 (𝐽 ∈ ℤ → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
122, 11syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
1312com12 32 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
14133adant3 1132 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
151, 14sylbi 216 . . . 4 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
16153imp 1111 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))
17 moddvds 16081 . . 3 ((𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆))))
1816, 17syl 17 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆))))
19 elfzoel2 13499 . . . . 5 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
20 zcn 12437 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2120subid1d 11434 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
2221eqcomd 2743 . . . . 5 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
2319, 22syl 17 . . . 4 (𝐼 ∈ (0..^𝑁) → 𝑁 = (𝑁 − 0))
24233ad2ant1 1133 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 = (𝑁 − 0))
25 elfzoelz 13500 . . . . 5 (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℤ)
2625zcnd 12540 . . . 4 (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℂ)
272zcnd 12540 . . . 4 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
28 zcn 12437 . . . 4 (𝑆 ∈ ℤ → 𝑆 ∈ ℂ)
29 pnpcan2 11374 . . . 4 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼𝐽))
3026, 27, 28, 29syl3an 1160 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼𝐽))
3124, 30breq12d 5116 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆)) ↔ (𝑁 − 0) ∥ (𝐼𝐽)))
32 fzocongeq 16140 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑁 − 0) ∥ (𝐼𝐽) ↔ 𝐼 = 𝐽))
33323adant3 1132 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝑁 − 0) ∥ (𝐼𝐽) ↔ 𝐼 = 𝐽))
3418, 31, 333bitrd 304 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5103  (class class class)co 7349  cc 10982  0cc0 10984   + caddc 10987   < clt 11122  cmin 11318  cn 12086  0cn0 12346  cz 12432  ..^cfzo 13495   mod cmo 13702  cdvds 16070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-1st 7911  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-sup 9311  df-inf 9312  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-n0 12347  df-z 12433  df-uz 12696  df-rp 12844  df-fz 13353  df-fzo 13496  df-fl 13625  df-mod 13703  df-seq 13835  df-exp 13896  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-dvds 16071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator