Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmodlteqALT Structured version   Visualization version   GIF version

 Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 13047 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addmodlteqALT ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))

StepHypRef Expression
1 elfzo0 12811 . . . . 5 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzoelz 12772 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
3 simplrr 796 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℕ)
4 nn0z 11735 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
54ad2antrl 719 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℤ)
6 zaddcl 11752 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ)
75, 6sylan 575 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ)
8 zaddcl 11752 . . . . . . . . . . 11 ((𝐽 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ)
98adantlr 706 . . . . . . . . . 10 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ)
103, 7, 93jca 1162 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))
1110exp31 412 . . . . . . . 8 (𝐽 ∈ ℤ → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
122, 11syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
1312com12 32 . . . . . 6 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
14133adant3 1166 . . . . 5 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
151, 14sylbi 209 . . . 4 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))))
16153imp 1141 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ))
17 moddvds 15375 . . 3 ((𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆))))
1816, 17syl 17 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆))))
19 elfzoel2 12771 . . . . 5 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
20 zcn 11716 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2120subid1d 10709 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
2221eqcomd 2831 . . . . 5 (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0))
2319, 22syl 17 . . . 4 (𝐼 ∈ (0..^𝑁) → 𝑁 = (𝑁 − 0))
24233ad2ant1 1167 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 = (𝑁 − 0))
25 elfzoelz 12772 . . . . 5 (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℤ)
2625zcnd 11818 . . . 4 (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℂ)
272zcnd 11818 . . . 4 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
28 zcn 11716 . . . 4 (𝑆 ∈ ℤ → 𝑆 ∈ ℂ)
29 pnpcan2 10649 . . . 4 ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼𝐽))
3026, 27, 28, 29syl3an 1203 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼𝐽))
3124, 30breq12d 4888 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆)) ↔ (𝑁 − 0) ∥ (𝐼𝐽)))
32 fzocongeq 15430 . . 3 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑁 − 0) ∥ (𝐼𝐽) ↔ 𝐼 = 𝐽))
33323adant3 1166 . 2 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝑁 − 0) ∥ (𝐼𝐽) ↔ 𝐼 = 𝐽))
3418, 31, 333bitrd 297 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   class class class wbr 4875  (class class class)co 6910  ℂcc 10257  0cc0 10259   + caddc 10262   < clt 10398   − cmin 10592  ℕcn 11357  ℕ0cn0 11625  ℤcz 11711  ..^cfzo 12767   mod cmo 12970   ∥ cdvds 15364 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-dvds 15365 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator