![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos11 | Structured version Visualization version GIF version |
Description: Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
Ref | Expression |
---|---|
cos11 | ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)) | |
2 | cosord 26405 | . . . . . 6 ⊢ ((𝐵 ∈ (0[,]π) ∧ 𝐴 ∈ (0[,]π)) → (𝐵 < 𝐴 ↔ (cos‘𝐴) < (cos‘𝐵))) | |
3 | 2 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 ↔ (cos‘𝐴) < (cos‘𝐵))) |
4 | 3 | notbid 318 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ 𝐵 < 𝐴 ↔ ¬ (cos‘𝐴) < (cos‘𝐵))) |
5 | cosord 26405 | . . . . 5 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | |
6 | 5 | notbid 318 | . . . 4 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ 𝐴 < 𝐵 ↔ ¬ (cos‘𝐵) < (cos‘𝐴))) |
7 | 4, 6 | anbi12d 630 | . . 3 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ (¬ (cos‘𝐴) < (cos‘𝐵) ∧ ¬ (cos‘𝐵) < (cos‘𝐴)))) |
8 | 1, 7 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) ↔ (¬ (cos‘𝐴) < (cos‘𝐵) ∧ ¬ (cos‘𝐵) < (cos‘𝐴)))) |
9 | 0re 11215 | . . . . 5 ⊢ 0 ∈ ℝ | |
10 | pire 26333 | . . . . 5 ⊢ π ∈ ℝ | |
11 | 9, 10 | elicc2i 13391 | . . . 4 ⊢ (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π)) |
12 | 11 | simp1bi 1142 | . . 3 ⊢ (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ) |
13 | 9, 10 | elicc2i 13391 | . . . 4 ⊢ (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π)) |
14 | 13 | simp1bi 1142 | . . 3 ⊢ (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ) |
15 | lttri3 11296 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
16 | 12, 14, 15 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
17 | recoscl 16087 | . . . 4 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
18 | recoscl 16087 | . . . 4 ⊢ (𝐵 ∈ ℝ → (cos‘𝐵) ∈ ℝ) | |
19 | lttri3 11296 | . . . 4 ⊢ (((cos‘𝐴) ∈ ℝ ∧ (cos‘𝐵) ∈ ℝ) → ((cos‘𝐴) = (cos‘𝐵) ↔ (¬ (cos‘𝐴) < (cos‘𝐵) ∧ ¬ (cos‘𝐵) < (cos‘𝐴)))) | |
20 | 17, 18, 19 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((cos‘𝐴) = (cos‘𝐵) ↔ (¬ (cos‘𝐴) < (cos‘𝐵) ∧ ¬ (cos‘𝐵) < (cos‘𝐴)))) |
21 | 12, 14, 20 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐴) = (cos‘𝐵) ↔ (¬ (cos‘𝐴) < (cos‘𝐵) ∧ ¬ (cos‘𝐵) < (cos‘𝐴)))) |
22 | 8, 16, 21 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 ℝcr 11106 0cc0 11107 < clt 11247 ≤ cle 11248 [,]cicc 13328 cosccos 16010 πcpi 16012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-ioo 13329 df-ioc 13330 df-ico 13331 df-icc 13332 df-fz 13486 df-fzo 13629 df-fl 13758 df-seq 13968 df-exp 14029 df-fac 14235 df-bc 14264 df-hash 14292 df-shft 15016 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-limsup 15417 df-clim 15434 df-rlim 15435 df-sum 15635 df-ef 16013 df-sin 16015 df-cos 16016 df-pi 16018 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-mulg 18992 df-cntz 19229 df-cmn 19698 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-cnfld 21235 df-top 22740 df-topon 22757 df-topsp 22779 df-bases 22793 df-cld 22867 df-ntr 22868 df-cls 22869 df-nei 22946 df-lp 22984 df-perf 22985 df-cn 23075 df-cnp 23076 df-haus 23163 df-tx 23410 df-hmeo 23603 df-fil 23694 df-fm 23786 df-flim 23787 df-flf 23788 df-xms 24170 df-ms 24171 df-tms 24172 df-cncf 24742 df-limc 25739 df-dv 25740 |
This theorem is referenced by: recosf1o 26409 |
Copyright terms: Public domain | W3C validator |