MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicubnd Structured version   Visualization version   GIF version

Theorem harmonicubnd 26481
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
harmonicubnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmonicubnd
StepHypRef Expression
1 fzfid 13925 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 13517 . . . . 5 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
32adantl 483 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
43nnrecred 12250 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
51, 4fsumrecl 15667 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
6 flge1nn 13773 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
76nnrpd 13001 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℝ+)
87relogcld 26100 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ∈ ℝ)
9 peano2re 11374 . . 3 ((log‘(⌊‘𝐴)) ∈ ℝ → ((log‘(⌊‘𝐴)) + 1) ∈ ℝ)
108, 9syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((log‘(⌊‘𝐴)) + 1) ∈ ℝ)
11 simpl 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
12 0red 11204 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
13 1re 11201 . . . . . . 7 1 ∈ ℝ
1413a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
15 0lt1 11723 . . . . . . 7 0 < 1
1615a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
17 simpr 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
1812, 14, 11, 16, 17ltletrd 11361 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
1911, 18elrpd 13000 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
2019relogcld 26100 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
21 peano2re 11374 . . 3 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) + 1) ∈ ℝ)
2220, 21syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((log‘𝐴) + 1) ∈ ℝ)
23 harmonicbnd 26475 . . . . 5 ((⌊‘𝐴) ∈ ℕ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∈ (γ[,]1))
246, 23syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∈ (γ[,]1))
25 emre 26477 . . . . . 6 γ ∈ ℝ
2625, 13elicc2i 13377 . . . . 5 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∈ (γ[,]1) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∈ ℝ ∧ γ ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ≤ 1))
2726simp3bi 1148 . . . 4 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ∈ (γ[,]1) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ≤ 1)
2824, 27syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ≤ 1)
295, 8, 14lesubadd2d 11800 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘(⌊‘𝐴))) ≤ 1 ↔ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘(⌊‘𝐴)) + 1)))
3028, 29mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘(⌊‘𝐴)) + 1))
31 flle 13751 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
3231adantr 482 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ≤ 𝐴)
337, 19logled 26104 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) ≤ 𝐴 ↔ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)))
3432, 33mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ≤ (log‘𝐴))
358, 20, 14, 34leadd1dd 11815 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((log‘(⌊‘𝐴)) + 1) ≤ ((log‘𝐴) + 1))
365, 10, 22, 30, 35letrd 11358 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107   class class class wbr 5144  cfv 6535  (class class class)co 7396  cr 11096  0cc0 11097  1c1 11098   + caddc 11100   < clt 11235  cle 11236  cmin 11431   / cdiv 11858  cn 12199  [,]cicc 13314  ...cfz 13471  cfl 13742  Σcsu 15619  logclog 26032  γcem 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ioc 13316  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-fl 13744  df-mod 13822  df-seq 13954  df-exp 14015  df-fac 14221  df-bc 14250  df-hash 14278  df-shft 15001  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-limsup 15402  df-clim 15419  df-rlim 15420  df-sum 15620  df-ef 15998  df-sin 16000  df-cos 16001  df-pi 16003  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-rest 17355  df-topn 17356  df-0g 17374  df-gsum 17375  df-topgen 17376  df-pt 17377  df-prds 17380  df-xrs 17435  df-qtop 17440  df-imas 17441  df-xps 17443  df-mre 17517  df-mrc 17518  df-acs 17520  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-mulg 18936  df-cntz 19166  df-cmn 19634  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-fbas 20915  df-fg 20916  df-cnfld 20919  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-cld 22492  df-ntr 22493  df-cls 22494  df-nei 22571  df-lp 22609  df-perf 22610  df-cn 22700  df-cnp 22701  df-haus 22788  df-tx 23035  df-hmeo 23228  df-fil 23319  df-fm 23411  df-flim 23412  df-flf 23413  df-xms 23795  df-ms 23796  df-tms 23797  df-cncf 24363  df-limc 25352  df-dv 25353  df-log 26034  df-em 26464
This theorem is referenced by:  fsumharmonic  26483  logfaclbnd  26692  vmalogdivsum2  27008  logdivbnd  27026  pntrsumo1  27035  pntrlog2bndlem2  27048  pntrlog2bndlem5  27051  pntrlog2bndlem6  27053
  Copyright terms: Public domain W3C validator