MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argrege0 Structured version   Visualization version   GIF version

Theorem argrege0 26671
Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
argrege0 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))

Proof of Theorem argrege0
StepHypRef Expression
1 logcl 26628 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
32imcld 15244 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
4 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5 simp1 1136 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
65abscld 15485 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
76recnd 11318 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
87mul01d 11489 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
9 absrpcl 15337 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1093adant3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
1110rpne0d 13104 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
125, 7, 11divcld 12070 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
136, 12remul2d 15276 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
145, 7, 11divcan2d 12072 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
1514fveq2d 6924 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
1613, 15eqtr3d 2782 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
174, 8, 163brtr4d 5198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · 0) ≤ ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
18 0re 11292 . . . . . . . . . 10 0 ∈ ℝ
1918a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ∈ ℝ)
2012recld 15243 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
2119, 20, 10lemul2d 13143 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (0 ≤ (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) ≤ ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
2217, 21mpbird 257 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 / (abs‘𝐴))))
23 efiarg 26667 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
24233adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
2524fveq2d 6924 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
2622, 25breqtrrd 5194 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
27 recosval 16184 . . . . . . 7 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
283, 27syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
2926, 28breqtrrd 5194 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (cos‘(ℑ‘(log‘𝐴))))
30 halfpire 26524 . . . . . . . . . 10 (π / 2) ∈ ℝ
31 pirp 26521 . . . . . . . . . . 11 π ∈ ℝ+
32 rphalfcl 13084 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
33 rpge0 13070 . . . . . . . . . . 11 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
3431, 32, 33mp2b 10 . . . . . . . . . 10 0 ≤ (π / 2)
35 pire 26518 . . . . . . . . . . 11 π ∈ ℝ
36 rphalflt 13086 . . . . . . . . . . . 12 (π ∈ ℝ+ → (π / 2) < π)
3731, 36ax-mp 5 . . . . . . . . . . 11 (π / 2) < π
3830, 35, 37ltleii 11413 . . . . . . . . . 10 (π / 2) ≤ π
3918, 35elicc2i 13473 . . . . . . . . . 10 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
4030, 34, 38, 39mpbir3an 1341 . . . . . . . . 9 (π / 2) ∈ (0[,]π)
413recnd 11318 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
4241abscld 15485 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4341absge0d 15493 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
44 logimcl 26629 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
45443adant3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4645simpld 494 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
4735renegcli 11597 . . . . . . . . . . . . 13 -π ∈ ℝ
48 ltle 11378 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
4947, 3, 48sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5046, 49mpd 15 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5145simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
52 absle 15364 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
533, 35, 52sylancl 585 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
5450, 51, 53mpbir2and 712 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
5518, 35elicc2i 13473 . . . . . . . . . 10 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
5642, 43, 54, 55syl3anbrc 1343 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
57 cosord 26591 . . . . . . . . 9 (((π / 2) ∈ (0[,]π) ∧ (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2))))
5840, 56, 57sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2))))
59 fveq2 6920 . . . . . . . . . . 11 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
6059a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
61 cosneg 16195 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
6241, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
63 fveqeq2 6929 . . . . . . . . . . 11 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
6462, 63syl5ibrcom 247 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
653absord 15464 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
6660, 64, 65mpjaod 859 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
67 coshalfpi 26529 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6867a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(π / 2)) = 0)
6966, 68breq12d 5179 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2)) ↔ (cos‘(ℑ‘(log‘𝐴))) < 0))
7058, 69bitrd 279 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(ℑ‘(log‘𝐴))) < 0))
7170notbid 318 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
72 lenlt 11368 . . . . . . 7 (((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ ¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴)))))
7342, 30, 72sylancl 585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ ¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴)))))
743recoscld 16192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) ∈ ℝ)
75 lenlt 11368 . . . . . . 7 ((0 ∈ ℝ ∧ (cos‘(ℑ‘(log‘𝐴))) ∈ ℝ) → (0 ≤ (cos‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
7618, 74, 75sylancr 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (0 ≤ (cos‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
7771, 73, 763bitr4d 311 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ 0 ≤ (cos‘(ℑ‘(log‘𝐴)))))
7829, 77mpbird 257 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2))
79 absle 15364 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2))))
803, 30, 79sylancl 585 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2))))
8178, 80mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
8281simpld 494 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -(π / 2) ≤ (ℑ‘(log‘𝐴)))
8381simprd 495 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
8430renegcli 11597 . . 3 -(π / 2) ∈ ℝ
8584, 30elicc2i 13473 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
863, 82, 83, 85syl3anbrc 1343 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186   · cmul 11189   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  2c2 12348  +crp 13057  [,]cicc 13410  cre 15146  cim 15147  abscabs 15283  expce 16109  cosccos 16112  πcpi 16114  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  logimul  26674  isosctrlem1  26879  asinbnd  26960  isosctrlem1ALT  44905
  Copyright terms: Public domain W3C validator