MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argrege0 Structured version   Visualization version   GIF version

Theorem argrege0 25301
Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
argrege0 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))

Proof of Theorem argrege0
StepHypRef Expression
1 logcl 25259 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
213adant3 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
32imcld 14602 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
4 simp3 1135 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5 simp1 1133 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
65abscld 14844 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
76recnd 10707 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
87mul01d 10877 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
9 absrpcl 14696 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1093adant3 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
1110rpne0d 12477 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
125, 7, 11divcld 11454 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
136, 12remul2d 14634 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
145, 7, 11divcan2d 11456 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
1514fveq2d 6662 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
1613, 15eqtr3d 2795 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
174, 8, 163brtr4d 5064 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘𝐴) · 0) ≤ ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
18 0re 10681 . . . . . . . . . 10 0 ∈ ℝ
1918a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ∈ ℝ)
2012recld 14601 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
2119, 20, 10lemul2d 12516 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (0 ≤ (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) ≤ ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
2217, 21mpbird 260 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 / (abs‘𝐴))))
23 efiarg 25297 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
24233adant3 1129 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
2524fveq2d 6662 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
2622, 25breqtrrd 5060 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
27 recosval 15537 . . . . . . 7 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
283, 27syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
2926, 28breqtrrd 5060 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (cos‘(ℑ‘(log‘𝐴))))
30 halfpire 25156 . . . . . . . . . 10 (π / 2) ∈ ℝ
31 pirp 25153 . . . . . . . . . . 11 π ∈ ℝ+
32 rphalfcl 12457 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
33 rpge0 12443 . . . . . . . . . . 11 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
3431, 32, 33mp2b 10 . . . . . . . . . 10 0 ≤ (π / 2)
35 pire 25150 . . . . . . . . . . 11 π ∈ ℝ
36 rphalflt 12459 . . . . . . . . . . . 12 (π ∈ ℝ+ → (π / 2) < π)
3731, 36ax-mp 5 . . . . . . . . . . 11 (π / 2) < π
3830, 35, 37ltleii 10801 . . . . . . . . . 10 (π / 2) ≤ π
3918, 35elicc2i 12845 . . . . . . . . . 10 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
4030, 34, 38, 39mpbir3an 1338 . . . . . . . . 9 (π / 2) ∈ (0[,]π)
413recnd 10707 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
4241abscld 14844 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
4341absge0d 14852 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
44 logimcl 25260 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
45443adant3 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4645simpld 498 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
4735renegcli 10985 . . . . . . . . . . . . 13 -π ∈ ℝ
48 ltle 10767 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
4947, 3, 48sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
5046, 49mpd 15 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
5145simprd 499 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
52 absle 14723 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
533, 35, 52sylancl 589 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
5450, 51, 53mpbir2and 712 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
5518, 35elicc2i 12845 . . . . . . . . . 10 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
5642, 43, 54, 55syl3anbrc 1340 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
57 cosord 25222 . . . . . . . . 9 (((π / 2) ∈ (0[,]π) ∧ (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2))))
5840, 56, 57sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2))))
59 fveq2 6658 . . . . . . . . . . 11 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
6059a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
61 cosneg 15548 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
6241, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
63 fveqeq2 6667 . . . . . . . . . . 11 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
6462, 63syl5ibrcom 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
653absord 14823 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
6660, 64, 65mpjaod 857 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
67 coshalfpi 25161 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6867a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(π / 2)) = 0)
6966, 68breq12d 5045 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) < (cos‘(π / 2)) ↔ (cos‘(ℑ‘(log‘𝐴))) < 0))
7058, 69bitrd 282 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ (cos‘(ℑ‘(log‘𝐴))) < 0))
7170notbid 321 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
72 lenlt 10757 . . . . . . 7 (((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ ¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴)))))
7342, 30, 72sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ ¬ (π / 2) < (abs‘(ℑ‘(log‘𝐴)))))
743recoscld 15545 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) ∈ ℝ)
75 lenlt 10757 . . . . . . 7 ((0 ∈ ℝ ∧ (cos‘(ℑ‘(log‘𝐴))) ∈ ℝ) → (0 ≤ (cos‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
7618, 74, 75sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (0 ≤ (cos‘(ℑ‘(log‘𝐴))) ↔ ¬ (cos‘(ℑ‘(log‘𝐴))) < 0))
7771, 73, 763bitr4d 314 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ 0 ≤ (cos‘(ℑ‘(log‘𝐴)))))
7829, 77mpbird 260 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2))
79 absle 14723 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2))))
803, 30, 79sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ (π / 2) ↔ (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2))))
8178, 80mpbid 235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (-(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
8281simpld 498 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → -(π / 2) ≤ (ℑ‘(log‘𝐴)))
8381simprd 499 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ (π / 2))
8430renegcli 10985 . . 3 -(π / 2) ∈ ℝ
8584, 30elicc2i 12845 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ (π / 2)))
863, 82, 83, 85syl3anbrc 1340 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5032  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  ici 10577   · cmul 10580   < clt 10713  cle 10714  -cneg 10909   / cdiv 11335  2c2 11729  +crp 12430  [,]cicc 12782  cre 14504  cim 14505  abscabs 14641  expce 15463  cosccos 15466  πcpi 15468  logclog 25245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247
This theorem is referenced by:  logimul  25304  isosctrlem1  25503  asinbnd  25584  isosctrlem1ALT  42013
  Copyright terms: Public domain W3C validator