MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat2s1fvw Structured version   Visualization version   GIF version

Theorem ccat2s1fvw 14610
Description: Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 28-Jan-2024.)
Assertion
Ref Expression
ccat2s1fvw ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))

Proof of Theorem ccat2s1fvw
StepHypRef Expression
1 ccatw2s1ass 14603 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
213ad2ant1 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩)))
32fveq1d 6863 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩))‘𝐼))
4 simp1 1136 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
5 s1cli 14577 . . . 4 ⟨“𝑋”⟩ ∈ Word V
6 ccatws1clv 14589 . . . 4 (⟨“𝑋”⟩ ∈ Word V → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word V)
75, 6mp1i 13 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word V)
8 simp2 1137 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0)
9 lencl 14505 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1093ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
11 nn0ge0 12474 . . . . . . . 8 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
1211adantl 481 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → 0 ≤ 𝐼)
13 0red 11184 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 12458 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1514adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
169nn0red 12511 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
1716adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → (♯‘𝑊) ∈ ℝ)
18 lelttr 11271 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
1913, 15, 17, 18syl3anc 1373 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → ((0 ≤ 𝐼𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2012, 19mpand 695 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0) → (𝐼 < (♯‘𝑊) → 0 < (♯‘𝑊)))
21203impia 1117 . . . . 5 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))
22 elnnnn0b 12493 . . . . 5 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊)))
2310, 21, 22sylanbrc 583 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
24 simp3 1138 . . . 4 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊))
25 elfzo0 13668 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
268, 23, 24, 25syl3anbrc 1344 . . 3 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊)))
27 ccatval1 14549 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word V ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩))‘𝐼) = (𝑊𝐼))
284, 7, 26, 27syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → ((𝑊 ++ (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩))‘𝐼) = (𝑊𝐼))
293, 28eqtrd 2765 1 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   < clt 11215  cle 11216  cn 12193  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568
This theorem is referenced by:  ccat2s1fst  14611  clwwlknonex2lem2  30044
  Copyright terms: Public domain W3C validator