| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat2s1fvw | Structured version Visualization version GIF version | ||
| Description: Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 28-Jan-2024.) |
| Ref | Expression |
|---|---|
| ccat2s1fvw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatw2s1ass 14556 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
| 3 | 2 | fveq1d 6828 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼)) |
| 4 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
| 5 | s1cli 14530 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 6 | ccatws1clv 14542 | . . . 4 ⊢ (〈“𝑋”〉 ∈ Word V → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V) |
| 8 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0) | |
| 9 | lencl 14458 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 10 | 9 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
| 11 | nn0ge0 12427 | . . . . . . . 8 ⊢ (𝐼 ∈ ℕ0 → 0 ≤ 𝐼) | |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ≤ 𝐼) |
| 13 | 0red 11137 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ) | |
| 14 | nn0re 12411 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ) |
| 16 | 9 | nn0red 12464 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (♯‘𝑊) ∈ ℝ) |
| 18 | lelttr 11224 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) | |
| 19 | 13, 15, 17, 18 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) |
| 20 | 12, 19 | mpand 695 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (𝐼 < (♯‘𝑊) → 0 < (♯‘𝑊))) |
| 21 | 20 | 3impia 1117 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)) |
| 22 | elnnnn0b 12446 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊))) | |
| 23 | 10, 21, 22 | sylanbrc 583 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ) |
| 24 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊)) | |
| 25 | elfzo0 13621 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊))) | |
| 26 | 8, 23, 24, 25 | syl3anbrc 1344 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
| 27 | ccatval1 14502 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) | |
| 28 | 4, 7, 26, 27 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
| 29 | 3, 28 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 ℕcn 12146 ℕ0cn0 12402 ..^cfzo 13575 ♯chash 14255 Word cword 14438 ++ cconcat 14495 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 |
| This theorem is referenced by: ccat2s1fst 14564 clwwlknonex2lem2 30070 |
| Copyright terms: Public domain | W3C validator |