Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1fvw | Structured version Visualization version GIF version |
Description: Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 13-Jan-2020.) (Proof shortened by AV, 1-May-2020.) (Revised by AV, 28-Jan-2024.) |
Ref | Expression |
---|---|
ccat2s1fvw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatw2s1ass 14389 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
3 | 2 | fveq1d 6806 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼)) |
4 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
5 | s1cli 14359 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
6 | ccatws1clv 14371 | . . . 4 ⊢ (〈“𝑋”〉 ∈ Word V → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V) |
8 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℕ0) | |
9 | lencl 14285 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
10 | 9 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
11 | nn0ge0 12308 | . . . . . . . 8 ⊢ (𝐼 ∈ ℕ0 → 0 ≤ 𝐼) | |
12 | 11 | adantl 483 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ≤ 𝐼) |
13 | 0red 11028 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ∈ ℝ) | |
14 | nn0re 12292 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ) | |
15 | 14 | adantl 483 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ) |
16 | 9 | nn0red 12344 | . . . . . . . . 9 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
17 | 16 | adantr 482 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (♯‘𝑊) ∈ ℝ) |
18 | lelttr 11115 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) | |
19 | 13, 15, 17, 18 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → ((0 ≤ 𝐼 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊))) |
20 | 12, 19 | mpand 693 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (𝐼 < (♯‘𝑊) → 0 < (♯‘𝑊))) |
21 | 20 | 3impia 1117 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 0 < (♯‘𝑊)) |
22 | elnnnn0b 12327 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 0 < (♯‘𝑊))) | |
23 | 10, 21, 22 | sylanbrc 584 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ) |
24 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 < (♯‘𝑊)) | |
25 | elfzo0 13478 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊))) | |
26 | 8, 23, 24, 25 | syl3anbrc 1343 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ (0..^(♯‘𝑊))) |
27 | ccatval1 14330 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word V ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) | |
28 | 4, 7, 26, 27 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
29 | 3, 28 | eqtrd 2776 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 0cc0 10921 < clt 11059 ≤ cle 11060 ℕcn 12023 ℕ0cn0 12283 ..^cfzo 13432 ♯chash 14094 Word cword 14266 ++ cconcat 14322 〈“cs1 14349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-fzo 13433 df-hash 14095 df-word 14267 df-concat 14323 df-s1 14350 |
This theorem is referenced by: ccat2s1fst 14400 clwwlknonex2lem2 28521 |
Copyright terms: Public domain | W3C validator |