MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expaddzlem Structured version   Visualization version   GIF version

Theorem expaddzlem 14016
Description: Lemma for expaddz 14017. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expaddzlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddzlem
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 simp3 1138 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3 expcl 13990 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
41, 2, 3syl2anc 584 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
5 simp2r 1201 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ)
65nnnn0d 12451 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ0)
7 expcl 13990 . . . 4 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
81, 6, 7syl2anc 584 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
9 simp1r 1199 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ≠ 0)
105nnzd 12503 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℤ)
11 expne0i 14005 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) ≠ 0)
121, 9, 10, 11syl3anc 1373 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ≠ 0)
134, 8, 12divrec2d 11910 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑁) / (𝐴↑-𝑀)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
14 simp2l 1200 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
1514recnd 11149 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ)
1615negnegd 11472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 = 𝑀)
17 nnnegz 12480 . . . . . . . . . 10 (-𝑀 ∈ ℕ → --𝑀 ∈ ℤ)
185, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → --𝑀 ∈ ℤ)
1916, 18eqeltrrd 2834 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
202nn0zd 12502 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2119, 20zaddcld 12589 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
22 expclz 13995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
231, 9, 21, 22syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
2423adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) ∈ ℂ)
258adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
2612adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-𝑀) ≠ 0)
2724, 25, 26divcan4d 11912 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = (𝐴↑(𝑀 + 𝑁)))
281adantr 480 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
29 simpr 484 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
306adantr 480 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℕ0)
31 expadd 14015 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ -𝑀 ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3228, 29, 30, 31syl3anc 1373 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)))
3321zcnd 12586 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
3433, 15negsubd 11487 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = ((𝑀 + 𝑁) − 𝑀))
352nn0cnd 12453 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
3615, 35pncan2d 11483 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3734, 36eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3837adantr 480 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) + -𝑀) = 𝑁)
3938oveq2d 7370 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑((𝑀 + 𝑁) + -𝑀)) = (𝐴𝑁))
4032, 39eqtr3d 2770 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) = (𝐴𝑁))
4140oveq1d 7369 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑(𝑀 + 𝑁)) · (𝐴↑-𝑀)) / (𝐴↑-𝑀)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
4227, 41eqtr3d 2770 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
431adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐴 ∈ ℂ)
4433adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℂ)
45 simpr 484 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
46 expneg2 13981 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4743, 44, 45, 46syl3anc 1373 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
4821znegcld 12587 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℤ)
49 expclz 13995 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -(𝑀 + 𝑁) ∈ ℤ) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
501, 9, 48, 49syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
5150adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) ∈ ℂ)
524adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
53 expne0i 14005 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
541, 9, 20, 53syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ≠ 0)
5554adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴𝑁) ≠ 0)
5651, 52, 55divcan4d 11912 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = (𝐴↑-(𝑀 + 𝑁)))
572adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℕ0)
58 expadd 14015 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
5943, 45, 57, 58syl3anc 1373 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)))
6015, 35negdi2d 11495 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀𝑁))
6160oveq1d 7369 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = ((-𝑀𝑁) + 𝑁))
6215negcld 11468 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℂ)
6362, 35npcand 11485 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((-𝑀𝑁) + 𝑁) = -𝑀)
6461, 63eqtrd 2768 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6564adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) + 𝑁) = -𝑀)
6665oveq2d 7370 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(-(𝑀 + 𝑁) + 𝑁)) = (𝐴↑-𝑀))
6759, 66eqtr3d 2770 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) = (𝐴↑-𝑀))
6867oveq1d 7369 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (((𝐴↑-(𝑀 + 𝑁)) · (𝐴𝑁)) / (𝐴𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
6956, 68eqtr3d 2770 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) / (𝐴𝑁)))
7069oveq2d 7370 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) / (𝐴𝑁))))
718, 4, 12, 54recdivd 11923 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7271adantr 480 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / ((𝐴↑-𝑀) / (𝐴𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7370, 72eqtrd 2768 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((𝐴𝑁) / (𝐴↑-𝑀)))
7447, 73eqtrd 2768 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
75 elznn0 12492 . . . . 5 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
7675simprbi 496 . . . 4 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7721, 76syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
7842, 74, 77mpjaodan 960 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑁) / (𝐴↑-𝑀)))
79 expneg2 13981 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
801, 15, 6, 79syl3anc 1373 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
8180oveq1d 7369 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (𝐴𝑁)))
8213, 78, 813eqtr4d 2778 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353  -cneg 11354   / cdiv 11783  cn 12134  0cn0 12390  cz 12477  cexp 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-exp 13973
This theorem is referenced by:  expaddz  14017
  Copyright terms: Public domain W3C validator