| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expevenpos | Structured version Visualization version GIF version | ||
| Description: Even powers are positive. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| Ref | Expression |
|---|---|
| expevenpos.mmp.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| expevenpos.mmp.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| expevenpos.mmp.3 | ⊢ (𝜑 → 2 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| expevenpos | ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expevenpos.mmp.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 𝐴 ∈ ℝ) |
| 3 | 2 | resqcld 14133 | . . . 4 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → (𝐴↑2) ∈ ℝ) |
| 4 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 𝑝 ∈ ℕ0) | |
| 5 | 2 | sqge0d 14145 | . . . 4 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 0 ≤ (𝐴↑2)) |
| 6 | 3, 4, 5 | expge0d 14172 | . . 3 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 0 ≤ ((𝐴↑2)↑𝑝)) |
| 7 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → (2 · 𝑝) = 𝑁) | |
| 8 | 7 | oveq2d 7416 | . . . 4 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → (𝐴↑(2 · 𝑝)) = (𝐴↑𝑁)) |
| 9 | 2 | recnd 11256 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 𝐴 ∈ ℂ) |
| 10 | 2nn0 12511 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 2 ∈ ℕ0) |
| 12 | 9, 4, 11 | expmuld 14157 | . . . 4 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → (𝐴↑(2 · 𝑝)) = ((𝐴↑2)↑𝑝)) |
| 13 | 8, 12 | eqtr3d 2771 | . . 3 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → (𝐴↑𝑁) = ((𝐴↑2)↑𝑝)) |
| 14 | 6, 13 | breqtrrd 5145 | . 2 ⊢ (((𝜑 ∧ 𝑝 ∈ ℕ0) ∧ (2 · 𝑝) = 𝑁) → 0 ≤ (𝐴↑𝑁)) |
| 15 | expevenpos.mmp.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | expevenpos.mmp.3 | . . 3 ⊢ (𝜑 → 2 ∥ 𝑁) | |
| 17 | evennn02n 16356 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑝 ∈ ℕ0 (2 · 𝑝) = 𝑁)) | |
| 18 | 17 | biimpa 476 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → ∃𝑝 ∈ ℕ0 (2 · 𝑝) = 𝑁) |
| 19 | 15, 16, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑝 ∈ ℕ0 (2 · 𝑝) = 𝑁) |
| 20 | 14, 19 | r19.29a 3146 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5117 (class class class)co 7400 ℝcr 11121 0cc0 11122 · cmul 11127 ≤ cle 11263 2c2 12288 ℕ0cn0 12494 ↑cexp 14069 ∥ cdvds 16259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-seq 14010 df-exp 14070 df-dvds 16260 |
| This theorem is referenced by: oexpled 32763 |
| Copyright terms: Public domain | W3C validator |