Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exple2exp Structured version   Visualization version   GIF version

Theorem 2exple2exp 32777
Description: If a nonnegative integer 𝑋 is a multiple of a power of two, but less than the next power of two, it is itself a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
2exple2exp.1 (𝜑𝑋 ∈ ℕ)
2exple2exp.2 (𝜑𝐾 ∈ ℕ0)
2exple2exp.3 (𝜑 → (2↑𝐾) ∥ 𝑋)
2exple2exp.4 (𝜑𝑋 ≤ (2↑(𝐾 + 1)))
Assertion
Ref Expression
2exple2exp (𝜑 → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑋   𝜑,𝑛

Proof of Theorem 2exple2exp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . 4 (𝑛 = 𝐾 → (2↑𝑛) = (2↑𝐾))
21eqeq2d 2741 . . 3 (𝑛 = 𝐾 → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑𝐾)))
3 2exple2exp.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
43adantr 480 . . 3 ((𝜑𝑋 < (2↑(𝐾 + 1))) → 𝐾 ∈ ℕ0)
5 simplr 768 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ)
65nnnn0d 12510 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ0)
7 2nn 12266 . . . . . . . . . . . . . 14 2 ∈ ℕ
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
98, 3nnexpcld 14217 . . . . . . . . . . . 12 (𝜑 → (2↑𝐾) ∈ ℕ)
109nncnd 12209 . . . . . . . . . . 11 (𝜑 → (2↑𝐾) ∈ ℂ)
1110ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℂ)
125nncnd 12209 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℂ)
1311, 12mulcomd 11202 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) = (𝑚 · (2↑𝐾)))
14 simpr 484 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = 𝑋)
15 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < (2↑(𝐾 + 1)))
16 2cnd 12271 . . . . . . . . . . . 12 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℂ)
173ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝐾 ∈ ℕ0)
1816, 17expp1d 14119 . . . . . . . . . . 11 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑(𝐾 + 1)) = ((2↑𝐾) · 2))
1915, 18breqtrd 5136 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < ((2↑𝐾) · 2))
2014, 19eqbrtrd 5132 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) < ((2↑𝐾) · 2))
2113, 20eqbrtrd 5132 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2))
225nnred 12208 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℝ)
23 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
2423a1i 11 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℝ)
259ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℕ)
2625nnrpd 13000 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℝ+)
2722, 24, 26ltmul2d 13044 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 < 2 ↔ ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2)))
2821, 27mpbird 257 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 < 2)
295nnne0d 12243 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ≠ 0)
3029neneqd 2931 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ¬ 𝑚 = 0)
31 nn0lt2 12604 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑚 < 2) → (𝑚 = 0 ∨ 𝑚 = 1))
3231orcanai 1004 . . . . . . 7 (((𝑚 ∈ ℕ0𝑚 < 2) ∧ ¬ 𝑚 = 0) → 𝑚 = 1)
336, 28, 30, 32syl21anc 837 . . . . . 6 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 = 1)
3433oveq1d 7405 . . . . 5 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = (1 · (2↑𝐾)))
3511mullidd 11199 . . . . 5 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (1 · (2↑𝐾)) = (2↑𝐾))
3634, 14, 353eqtr3d 2773 . . . 4 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 = (2↑𝐾))
37 2exple2exp.1 . . . . . 6 (𝜑𝑋 ∈ ℕ)
38 2exple2exp.3 . . . . . 6 (𝜑 → (2↑𝐾) ∥ 𝑋)
39 nndivides 16239 . . . . . . 7 (((2↑𝐾) ∈ ℕ ∧ 𝑋 ∈ ℕ) → ((2↑𝐾) ∥ 𝑋 ↔ ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋))
4039biimpa 476 . . . . . 6 ((((2↑𝐾) ∈ ℕ ∧ 𝑋 ∈ ℕ) ∧ (2↑𝐾) ∥ 𝑋) → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
419, 37, 38, 40syl21anc 837 . . . . 5 (𝜑 → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
4241adantr 480 . . . 4 ((𝜑𝑋 < (2↑(𝐾 + 1))) → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
4336, 42r19.29a 3142 . . 3 ((𝜑𝑋 < (2↑(𝐾 + 1))) → 𝑋 = (2↑𝐾))
442, 4, 43rspcedvdw 3594 . 2 ((𝜑𝑋 < (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
45 oveq2 7398 . . . 4 (𝑛 = (𝐾 + 1) → (2↑𝑛) = (2↑(𝐾 + 1)))
4645eqeq2d 2741 . . 3 (𝑛 = (𝐾 + 1) → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑(𝐾 + 1))))
47 peano2nn0 12489 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
483, 47syl 17 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4948adantr 480 . . 3 ((𝜑𝑋 = (2↑(𝐾 + 1))) → (𝐾 + 1) ∈ ℕ0)
50 simpr 484 . . 3 ((𝜑𝑋 = (2↑(𝐾 + 1))) → 𝑋 = (2↑(𝐾 + 1)))
5146, 49, 50rspcedvdw 3594 . 2 ((𝜑𝑋 = (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
5237nnred 12208 . . 3 (𝜑𝑋 ∈ ℝ)
5323a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
5453, 48reexpcld 14135 . . 3 (𝜑 → (2↑(𝐾 + 1)) ∈ ℝ)
55 2exple2exp.4 . . 3 (𝜑𝑋 ≤ (2↑(𝐾 + 1)))
56 leloe 11267 . . . 4 ((𝑋 ∈ ℝ ∧ (2↑(𝐾 + 1)) ∈ ℝ) → (𝑋 ≤ (2↑(𝐾 + 1)) ↔ (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1)))))
5756biimpa 476 . . 3 (((𝑋 ∈ ℝ ∧ (2↑(𝐾 + 1)) ∈ ℝ) ∧ 𝑋 ≤ (2↑(𝐾 + 1))) → (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1))))
5852, 54, 55, 57syl21anc 837 . 2 (𝜑 → (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1))))
5944, 51, 58mpjaodan 960 1 (𝜑 → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cn 12193  2c2 12248  0cn0 12449  cexp 14033  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-dvds 16230
This theorem is referenced by:  fldext2rspun  33684
  Copyright terms: Public domain W3C validator