Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exple2exp Structured version   Visualization version   GIF version

Theorem 2exple2exp 32828
Description: If a nonnegative integer 𝑋 is a multiple of a power of two, but less than the next power of two, it is itself a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
2exple2exp.1 (𝜑𝑋 ∈ ℕ)
2exple2exp.2 (𝜑𝐾 ∈ ℕ0)
2exple2exp.3 (𝜑 → (2↑𝐾) ∥ 𝑋)
2exple2exp.4 (𝜑𝑋 ≤ (2↑(𝐾 + 1)))
Assertion
Ref Expression
2exple2exp (𝜑 → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑋   𝜑,𝑛

Proof of Theorem 2exple2exp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . 4 (𝑛 = 𝐾 → (2↑𝑛) = (2↑𝐾))
21eqeq2d 2742 . . 3 (𝑛 = 𝐾 → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑𝐾)))
3 2exple2exp.2 . . . 4 (𝜑𝐾 ∈ ℕ0)
43adantr 480 . . 3 ((𝜑𝑋 < (2↑(𝐾 + 1))) → 𝐾 ∈ ℕ0)
5 simplr 768 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ)
65nnnn0d 12442 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ0)
7 2nn 12198 . . . . . . . . . . . . . 14 2 ∈ ℕ
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
98, 3nnexpcld 14152 . . . . . . . . . . . 12 (𝜑 → (2↑𝐾) ∈ ℕ)
109nncnd 12141 . . . . . . . . . . 11 (𝜑 → (2↑𝐾) ∈ ℂ)
1110ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℂ)
125nncnd 12141 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℂ)
1311, 12mulcomd 11133 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) = (𝑚 · (2↑𝐾)))
14 simpr 484 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = 𝑋)
15 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < (2↑(𝐾 + 1)))
16 2cnd 12203 . . . . . . . . . . . 12 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℂ)
173ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝐾 ∈ ℕ0)
1816, 17expp1d 14054 . . . . . . . . . . 11 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑(𝐾 + 1)) = ((2↑𝐾) · 2))
1915, 18breqtrd 5115 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < ((2↑𝐾) · 2))
2014, 19eqbrtrd 5111 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) < ((2↑𝐾) · 2))
2113, 20eqbrtrd 5111 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2))
225nnred 12140 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℝ)
23 2re 12199 . . . . . . . . . 10 2 ∈ ℝ
2423a1i 11 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℝ)
259ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℕ)
2625nnrpd 12932 . . . . . . . . 9 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℝ+)
2722, 24, 26ltmul2d 12976 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 < 2 ↔ ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2)))
2821, 27mpbird 257 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 < 2)
295nnne0d 12175 . . . . . . . 8 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ≠ 0)
3029neneqd 2933 . . . . . . 7 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ¬ 𝑚 = 0)
31 nn0lt2 12536 . . . . . . . 8 ((𝑚 ∈ ℕ0𝑚 < 2) → (𝑚 = 0 ∨ 𝑚 = 1))
3231orcanai 1004 . . . . . . 7 (((𝑚 ∈ ℕ0𝑚 < 2) ∧ ¬ 𝑚 = 0) → 𝑚 = 1)
336, 28, 30, 32syl21anc 837 . . . . . 6 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 = 1)
3433oveq1d 7361 . . . . 5 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = (1 · (2↑𝐾)))
3511mullidd 11130 . . . . 5 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (1 · (2↑𝐾)) = (2↑𝐾))
3634, 14, 353eqtr3d 2774 . . . 4 ((((𝜑𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 = (2↑𝐾))
37 2exple2exp.1 . . . . . 6 (𝜑𝑋 ∈ ℕ)
38 2exple2exp.3 . . . . . 6 (𝜑 → (2↑𝐾) ∥ 𝑋)
39 nndivides 16173 . . . . . . 7 (((2↑𝐾) ∈ ℕ ∧ 𝑋 ∈ ℕ) → ((2↑𝐾) ∥ 𝑋 ↔ ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋))
4039biimpa 476 . . . . . 6 ((((2↑𝐾) ∈ ℕ ∧ 𝑋 ∈ ℕ) ∧ (2↑𝐾) ∥ 𝑋) → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
419, 37, 38, 40syl21anc 837 . . . . 5 (𝜑 → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
4241adantr 480 . . . 4 ((𝜑𝑋 < (2↑(𝐾 + 1))) → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋)
4336, 42r19.29a 3140 . . 3 ((𝜑𝑋 < (2↑(𝐾 + 1))) → 𝑋 = (2↑𝐾))
442, 4, 43rspcedvdw 3575 . 2 ((𝜑𝑋 < (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
45 oveq2 7354 . . . 4 (𝑛 = (𝐾 + 1) → (2↑𝑛) = (2↑(𝐾 + 1)))
4645eqeq2d 2742 . . 3 (𝑛 = (𝐾 + 1) → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑(𝐾 + 1))))
47 peano2nn0 12421 . . . . 5 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
483, 47syl 17 . . . 4 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4948adantr 480 . . 3 ((𝜑𝑋 = (2↑(𝐾 + 1))) → (𝐾 + 1) ∈ ℕ0)
50 simpr 484 . . 3 ((𝜑𝑋 = (2↑(𝐾 + 1))) → 𝑋 = (2↑(𝐾 + 1)))
5146, 49, 50rspcedvdw 3575 . 2 ((𝜑𝑋 = (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
5237nnred 12140 . . 3 (𝜑𝑋 ∈ ℝ)
5323a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
5453, 48reexpcld 14070 . . 3 (𝜑 → (2↑(𝐾 + 1)) ∈ ℝ)
55 2exple2exp.4 . . 3 (𝜑𝑋 ≤ (2↑(𝐾 + 1)))
56 leloe 11199 . . . 4 ((𝑋 ∈ ℝ ∧ (2↑(𝐾 + 1)) ∈ ℝ) → (𝑋 ≤ (2↑(𝐾 + 1)) ↔ (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1)))))
5756biimpa 476 . . 3 (((𝑋 ∈ ℝ ∧ (2↑(𝐾 + 1)) ∈ ℝ) ∧ 𝑋 ≤ (2↑(𝐾 + 1))) → (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1))))
5852, 54, 55, 57syl21anc 837 . 2 (𝜑 → (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1))))
5944, 51, 58mpjaodan 960 1 (𝜑 → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5089  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cn 12125  2c2 12180  0cn0 12381  cexp 13968  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-dvds 16164
This theorem is referenced by:  fldext2rspun  33695
  Copyright terms: Public domain W3C validator