| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . 4
⊢ (𝑛 = 𝐾 → (2↑𝑛) = (2↑𝐾)) |
| 2 | 1 | eqeq2d 2748 |
. . 3
⊢ (𝑛 = 𝐾 → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑𝐾))) |
| 3 | | 2exple2exp.2 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) → 𝐾 ∈
ℕ0) |
| 5 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ) |
| 6 | 5 | nnnn0d 12587 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℕ0) |
| 7 | | 2nn 12339 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
| 8 | 7 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℕ) |
| 9 | 8, 3 | nnexpcld 14284 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2↑𝐾) ∈ ℕ) |
| 10 | 9 | nncnd 12282 |
. . . . . . . . . . 11
⊢ (𝜑 → (2↑𝐾) ∈ ℂ) |
| 11 | 10 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℂ) |
| 12 | 5 | nncnd 12282 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℂ) |
| 13 | 11, 12 | mulcomd 11282 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) = (𝑚 · (2↑𝐾))) |
| 14 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = 𝑋) |
| 15 | | simpllr 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < (2↑(𝐾 + 1))) |
| 16 | | 2cnd 12344 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℂ) |
| 17 | 3 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝐾 ∈
ℕ0) |
| 18 | 16, 17 | expp1d 14187 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑(𝐾 + 1)) = ((2↑𝐾) · 2)) |
| 19 | 15, 18 | breqtrd 5169 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 < ((2↑𝐾) · 2)) |
| 20 | 14, 19 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) < ((2↑𝐾) · 2)) |
| 21 | 13, 20 | eqbrtrd 5165 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2)) |
| 22 | 5 | nnred 12281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ∈ ℝ) |
| 23 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 2 ∈ ℝ) |
| 25 | 9 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈ ℕ) |
| 26 | 25 | nnrpd 13075 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (2↑𝐾) ∈
ℝ+) |
| 27 | 22, 24, 26 | ltmul2d 13119 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 < 2 ↔ ((2↑𝐾) · 𝑚) < ((2↑𝐾) · 2))) |
| 28 | 21, 27 | mpbird 257 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 < 2) |
| 29 | 5 | nnne0d 12316 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 ≠ 0) |
| 30 | 29 | neneqd 2945 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → ¬ 𝑚 = 0) |
| 31 | | nn0lt2 12681 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 2) →
(𝑚 = 0 ∨ 𝑚 = 1)) |
| 32 | 31 | orcanai 1005 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
∧ 𝑚 < 2) ∧ ¬
𝑚 = 0) → 𝑚 = 1) |
| 33 | 6, 28, 30, 32 | syl21anc 838 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑚 = 1) |
| 34 | 33 | oveq1d 7446 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (𝑚 · (2↑𝐾)) = (1 · (2↑𝐾))) |
| 35 | 11 | mullidd 11279 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → (1 · (2↑𝐾)) = (2↑𝐾)) |
| 36 | 34, 14, 35 | 3eqtr3d 2785 |
. . . 4
⊢ ((((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) ∧ 𝑚 ∈ ℕ) ∧ (𝑚 · (2↑𝐾)) = 𝑋) → 𝑋 = (2↑𝐾)) |
| 37 | | 2exple2exp.1 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℕ) |
| 38 | | 2exple2exp.3 |
. . . . . 6
⊢ (𝜑 → (2↑𝐾) ∥ 𝑋) |
| 39 | | nndivides 16300 |
. . . . . . 7
⊢
(((2↑𝐾) ∈
ℕ ∧ 𝑋 ∈
ℕ) → ((2↑𝐾)
∥ 𝑋 ↔
∃𝑚 ∈ ℕ
(𝑚 · (2↑𝐾)) = 𝑋)) |
| 40 | 39 | biimpa 476 |
. . . . . 6
⊢
((((2↑𝐾) ∈
ℕ ∧ 𝑋 ∈
ℕ) ∧ (2↑𝐾)
∥ 𝑋) →
∃𝑚 ∈ ℕ
(𝑚 · (2↑𝐾)) = 𝑋) |
| 41 | 9, 37, 38, 40 | syl21anc 838 |
. . . . 5
⊢ (𝜑 → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋) |
| 42 | 41 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) → ∃𝑚 ∈ ℕ (𝑚 · (2↑𝐾)) = 𝑋) |
| 43 | 36, 42 | r19.29a 3162 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) → 𝑋 = (2↑𝐾)) |
| 44 | 2, 4, 43 | rspcedvdw 3625 |
. 2
⊢ ((𝜑 ∧ 𝑋 < (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛)) |
| 45 | | oveq2 7439 |
. . . 4
⊢ (𝑛 = (𝐾 + 1) → (2↑𝑛) = (2↑(𝐾 + 1))) |
| 46 | 45 | eqeq2d 2748 |
. . 3
⊢ (𝑛 = (𝐾 + 1) → (𝑋 = (2↑𝑛) ↔ 𝑋 = (2↑(𝐾 + 1)))) |
| 47 | | peano2nn0 12566 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
| 48 | 3, 47 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐾 + 1) ∈
ℕ0) |
| 49 | 48 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (2↑(𝐾 + 1))) → (𝐾 + 1) ∈
ℕ0) |
| 50 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = (2↑(𝐾 + 1))) → 𝑋 = (2↑(𝐾 + 1))) |
| 51 | 46, 49, 50 | rspcedvdw 3625 |
. 2
⊢ ((𝜑 ∧ 𝑋 = (2↑(𝐾 + 1))) → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛)) |
| 52 | 37 | nnred 12281 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 53 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ) |
| 54 | 53, 48 | reexpcld 14203 |
. . 3
⊢ (𝜑 → (2↑(𝐾 + 1)) ∈ ℝ) |
| 55 | | 2exple2exp.4 |
. . 3
⊢ (𝜑 → 𝑋 ≤ (2↑(𝐾 + 1))) |
| 56 | | leloe 11347 |
. . . 4
⊢ ((𝑋 ∈ ℝ ∧
(2↑(𝐾 + 1)) ∈
ℝ) → (𝑋 ≤
(2↑(𝐾 + 1)) ↔
(𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1))))) |
| 57 | 56 | biimpa 476 |
. . 3
⊢ (((𝑋 ∈ ℝ ∧
(2↑(𝐾 + 1)) ∈
ℝ) ∧ 𝑋 ≤
(2↑(𝐾 + 1))) →
(𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1)))) |
| 58 | 52, 54, 55, 57 | syl21anc 838 |
. 2
⊢ (𝜑 → (𝑋 < (2↑(𝐾 + 1)) ∨ 𝑋 = (2↑(𝐾 + 1)))) |
| 59 | 44, 51, 58 | mpjaodan 961 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 𝑋 = (2↑𝑛)) |