MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqge0d Structured version   Visualization version   GIF version

Theorem sqge0d 14174
Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
sqge0d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqge0d (𝜑 → 0 ≤ (𝐴↑2))

Proof of Theorem sqge0d
StepHypRef Expression
1 sqge0d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 sqge0 14173 . 2 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2syl 17 1 (𝜑 → 0 ≤ (𝐴↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  cle 11294  2c2 12319  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  zzlesq  14242  cjmulge0  15182  01sqrexlem7  15284  absrele  15344  amgm2  15405  efgt0  16136  sinbnd  16213  cosbnd  16214  cphnmf  25243  ipge0  25246  csbren  25447  trirn  25448  rrxmet  25456  rrxdstprj1  25457  minveclem3b  25476  minveclem7  25483  pjthlem1  25485  dveflem  26032  loglesqrt  26819  2sq2  27492  2sqmod  27495  mulog2sumlem2  27594  log2sumbnd  27603  eqeelen  28934  brbtwn2  28935  colinearalglem4  28939  axcgrid  28946  axsegconlem3  28949  ax5seglem3  28961  minvecolem5  30910  minvecolem7  30912  normpyc  31175  pjhthlem1  31420  chscllem2  31667  pjige0i  31719  hstle1  32255  strlem3a  32281  sqsscirc1  33869  areacirclem1  37695  areacirclem4  37698  rrnmet  37816  rrndstprj1  37817  rrndstprj2  37818  3cubeslem1  42672  pellexlem2  42818  pellexlem6  42822  int-sqgeq0d  44176  sqrlearg  45506  rrndistlt  46246  hoiqssbllem2  46579  flsqrt  47518  2sphere  48599  itsclc0yqsollem2  48613  2itscp  48631  itscnhlinecirc02plem3  48634  itscnhlinecirc02p  48635
  Copyright terms: Public domain W3C validator