MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqge0d Structured version   Visualization version   GIF version

Theorem sqge0d 14046
Description: A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
resqcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqge0d (𝜑 → 0 ≤ (𝐴↑2))

Proof of Theorem sqge0d
StepHypRef Expression
1 resqcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 sqge0 13935 . 2 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2syl 17 1 (𝜑 → 0 ≤ (𝐴↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   class class class wbr 5087  (class class class)co 7317  cr 10950  0cc0 10951  cle 11090  2c2 12108  cexp 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-n0 12314  df-z 12400  df-uz 12663  df-seq 13802  df-exp 13863
This theorem is referenced by:  cjmulge0  14936  sqrlem7  15039  absrele  15099  amgm2  15160  efgt0  15891  sinbnd  15968  cosbnd  15969  cphnmf  24442  ipge0  24445  csbren  24646  trirn  24647  rrxmet  24655  rrxdstprj1  24656  minveclem3b  24675  minveclem7  24682  pjthlem1  24684  dveflem  25226  loglesqrt  25994  2sq2  26664  2sqmod  26667  mulog2sumlem2  26766  log2sumbnd  26775  eqeelen  27408  brbtwn2  27409  colinearalglem4  27413  axcgrid  27420  axsegconlem3  27423  ax5seglem3  27435  minvecolem5  29379  minvecolem7  29381  normpyc  29644  pjhthlem1  29889  chscllem2  30136  pjige0i  30188  hstle1  30724  strlem3a  30750  sqsscirc1  31998  areacirclem1  35937  areacirclem4  35940  rrnmet  36059  rrndstprj1  36060  rrndstprj2  36061  3cubeslem1  40722  pellexlem2  40868  pellexlem6  40872  int-sqgeq0d  42031  sqrlearg  43341  rrndistlt  44081  hoiqssbllem2  44412  flsqrt  45310  2sphere  46360  itsclc0yqsollem2  46374  2itscp  46392  itscnhlinecirc02plem3  46395  itscnhlinecirc02p  46396
  Copyright terms: Public domain W3C validator