| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqge0d | Structured version Visualization version GIF version | ||
| Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| sqge0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| sqge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqge0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | sqge0 14159 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 ≤ cle 11275 2c2 12300 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: zzlesq 14229 cjmulge0 15170 01sqrexlem7 15272 absrele 15332 amgm2 15393 efgt0 16126 sinbnd 16203 cosbnd 16204 cphnmf 25152 ipge0 25155 csbren 25356 trirn 25357 rrxmet 25365 rrxdstprj1 25366 minveclem3b 25385 minveclem7 25392 pjthlem1 25394 dveflem 25940 loglesqrt 26728 2sq2 27401 2sqmod 27404 mulog2sumlem2 27503 log2sumbnd 27512 eqeelen 28888 brbtwn2 28889 colinearalglem4 28893 axcgrid 28900 axsegconlem3 28903 ax5seglem3 28915 minvecolem5 30867 minvecolem7 30869 normpyc 31132 pjhthlem1 31377 chscllem2 31624 pjige0i 31676 hstle1 32212 strlem3a 32238 receqid 32727 expevenpos 32830 cos9thpiminplylem1 33821 sqsscirc1 33944 areacirclem1 37737 areacirclem4 37740 rrnmet 37858 rrndstprj1 37859 rrndstprj2 37860 3cubeslem1 42674 pellexlem2 42820 pellexlem6 42824 int-sqgeq0d 44177 sqrlearg 45549 rrndistlt 46286 hoiqssbllem2 46619 flsqrt 47574 2sphere 48696 itsclc0yqsollem2 48710 2itscp 48728 itscnhlinecirc02plem3 48731 itscnhlinecirc02p 48732 |
| Copyright terms: Public domain | W3C validator |