Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqge0d | Structured version Visualization version GIF version |
Description: A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
resqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
sqge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | sqge0 13935 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5087 (class class class)co 7317 ℝcr 10950 0cc0 10951 ≤ cle 11090 2c2 12108 ↑cexp 13862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-n0 12314 df-z 12400 df-uz 12663 df-seq 13802 df-exp 13863 |
This theorem is referenced by: cjmulge0 14936 sqrlem7 15039 absrele 15099 amgm2 15160 efgt0 15891 sinbnd 15968 cosbnd 15969 cphnmf 24442 ipge0 24445 csbren 24646 trirn 24647 rrxmet 24655 rrxdstprj1 24656 minveclem3b 24675 minveclem7 24682 pjthlem1 24684 dveflem 25226 loglesqrt 25994 2sq2 26664 2sqmod 26667 mulog2sumlem2 26766 log2sumbnd 26775 eqeelen 27408 brbtwn2 27409 colinearalglem4 27413 axcgrid 27420 axsegconlem3 27423 ax5seglem3 27435 minvecolem5 29379 minvecolem7 29381 normpyc 29644 pjhthlem1 29889 chscllem2 30136 pjige0i 30188 hstle1 30724 strlem3a 30750 sqsscirc1 31998 areacirclem1 35937 areacirclem4 35940 rrnmet 36059 rrndstprj1 36060 rrndstprj2 36061 3cubeslem1 40722 pellexlem2 40868 pellexlem6 40872 int-sqgeq0d 42031 sqrlearg 43341 rrndistlt 44081 hoiqssbllem2 44412 flsqrt 45310 2sphere 46360 itsclc0yqsollem2 46374 2itscp 46392 itscnhlinecirc02plem3 46395 itscnhlinecirc02p 46396 |
Copyright terms: Public domain | W3C validator |