| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqge0d | Structured version Visualization version GIF version | ||
| Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| sqge0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| sqge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqge0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | sqge0 14047 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 ≤ cle 11156 2c2 12189 ↑cexp 13972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-uz 12741 df-seq 13913 df-exp 13973 |
| This theorem is referenced by: zzlesq 14117 cjmulge0 15057 01sqrexlem7 15159 absrele 15219 amgm2 15281 efgt0 16016 sinbnd 16093 cosbnd 16094 cphnmf 25125 ipge0 25128 csbren 25329 trirn 25330 rrxmet 25338 rrxdstprj1 25339 minveclem3b 25358 minveclem7 25365 pjthlem1 25367 dveflem 25913 loglesqrt 26701 2sq2 27374 2sqmod 27377 mulog2sumlem2 27476 log2sumbnd 27485 eqeelen 28886 brbtwn2 28887 colinearalglem4 28891 axcgrid 28898 axsegconlem3 28901 ax5seglem3 28913 minvecolem5 30865 minvecolem7 30867 normpyc 31130 pjhthlem1 31375 chscllem2 31622 pjige0i 31674 hstle1 32210 strlem3a 32236 receqid 32734 expevenpos 32836 cos9thpiminplylem1 33818 sqsscirc1 33944 areacirclem1 37771 areacirclem4 37774 rrnmet 37892 rrndstprj1 37893 rrndstprj2 37894 3cubeslem1 42804 pellexlem2 42950 pellexlem6 42954 int-sqgeq0d 44306 sqrlearg 45680 rrndistlt 46415 hoiqssbllem2 46748 flsqrt 47720 2sphere 48877 itsclc0yqsollem2 48891 2itscp 48909 itscnhlinecirc02plem3 48912 itscnhlinecirc02p 48913 |
| Copyright terms: Public domain | W3C validator |