![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqge0d | Structured version Visualization version GIF version |
Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
sqge0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
sqge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqge0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | sqge0 14155 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 ℝcr 11157 0cc0 11158 ≤ cle 11299 2c2 12319 ↑cexp 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 |
This theorem is referenced by: zzlesq 14224 cjmulge0 15151 01sqrexlem7 15253 absrele 15313 amgm2 15374 efgt0 16105 sinbnd 16182 cosbnd 16183 cphnmf 25214 ipge0 25217 csbren 25418 trirn 25419 rrxmet 25427 rrxdstprj1 25428 minveclem3b 25447 minveclem7 25454 pjthlem1 25456 dveflem 26002 loglesqrt 26789 2sq2 27462 2sqmod 27465 mulog2sumlem2 27564 log2sumbnd 27573 eqeelen 28838 brbtwn2 28839 colinearalglem4 28843 axcgrid 28850 axsegconlem3 28853 ax5seglem3 28865 minvecolem5 30814 minvecolem7 30816 normpyc 31079 pjhthlem1 31324 chscllem2 31571 pjige0i 31623 hstle1 32159 strlem3a 32185 sqsscirc1 33723 areacirclem1 37409 areacirclem4 37412 rrnmet 37530 rrndstprj1 37531 rrndstprj2 37532 3cubeslem1 42341 pellexlem2 42487 pellexlem6 42491 int-sqgeq0d 43853 sqrlearg 45171 rrndistlt 45911 hoiqssbllem2 46244 flsqrt 47165 2sphere 48137 itsclc0yqsollem2 48151 2itscp 48169 itscnhlinecirc02plem3 48172 itscnhlinecirc02p 48173 |
Copyright terms: Public domain | W3C validator |