| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqge0d | Structured version Visualization version GIF version | ||
| Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| sqge0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| sqge0d | ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqge0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | sqge0 14043 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 ≤ (𝐴↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 ≤ cle 11147 2c2 12180 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: zzlesq 14113 cjmulge0 15053 01sqrexlem7 15155 absrele 15215 amgm2 15277 efgt0 16012 sinbnd 16089 cosbnd 16090 cphnmf 25123 ipge0 25126 csbren 25327 trirn 25328 rrxmet 25336 rrxdstprj1 25337 minveclem3b 25356 minveclem7 25363 pjthlem1 25365 dveflem 25911 loglesqrt 26699 2sq2 27372 2sqmod 27375 mulog2sumlem2 27474 log2sumbnd 27483 eqeelen 28883 brbtwn2 28884 colinearalglem4 28888 axcgrid 28895 axsegconlem3 28898 ax5seglem3 28910 minvecolem5 30859 minvecolem7 30861 normpyc 31124 pjhthlem1 31369 chscllem2 31616 pjige0i 31668 hstle1 32204 strlem3a 32230 receqid 32726 expevenpos 32827 cos9thpiminplylem1 33793 sqsscirc1 33919 areacirclem1 37754 areacirclem4 37757 rrnmet 37875 rrndstprj1 37876 rrndstprj2 37877 3cubeslem1 42723 pellexlem2 42869 pellexlem6 42873 int-sqgeq0d 44225 sqrlearg 45599 rrndistlt 46334 hoiqssbllem2 46667 flsqrt 47630 2sphere 48787 itsclc0yqsollem2 48801 2itscp 48819 itscnhlinecirc02plem3 48822 itscnhlinecirc02p 48823 |
| Copyright terms: Public domain | W3C validator |