MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqge0d Structured version   Visualization version   GIF version

Theorem sqge0d 14102
Description: The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
sqge0d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqge0d (𝜑 → 0 ≤ (𝐴↑2))

Proof of Theorem sqge0d
StepHypRef Expression
1 sqge0d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 sqge0 14101 . 2 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2syl 17 1 (𝜑 → 0 ≤ (𝐴↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  cle 11209  2c2 12241  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  zzlesq  14171  cjmulge0  15112  01sqrexlem7  15214  absrele  15274  amgm2  15336  efgt0  16071  sinbnd  16148  cosbnd  16149  cphnmf  25095  ipge0  25098  csbren  25299  trirn  25300  rrxmet  25308  rrxdstprj1  25309  minveclem3b  25328  minveclem7  25335  pjthlem1  25337  dveflem  25883  loglesqrt  26671  2sq2  27344  2sqmod  27347  mulog2sumlem2  27446  log2sumbnd  27455  eqeelen  28831  brbtwn2  28832  colinearalglem4  28836  axcgrid  28843  axsegconlem3  28846  ax5seglem3  28858  minvecolem5  30810  minvecolem7  30812  normpyc  31075  pjhthlem1  31320  chscllem2  31567  pjige0i  31619  hstle1  32155  strlem3a  32181  receqid  32668  expevenpos  32771  cos9thpiminplylem1  33772  sqsscirc1  33898  areacirclem1  37702  areacirclem4  37705  rrnmet  37823  rrndstprj1  37824  rrndstprj2  37825  3cubeslem1  42672  pellexlem2  42818  pellexlem6  42822  int-sqgeq0d  44175  sqrlearg  45551  rrndistlt  46288  hoiqssbllem2  46621  flsqrt  47591  2sphere  48735  itsclc0yqsollem2  48749  2itscp  48767  itscnhlinecirc02plem3  48770  itscnhlinecirc02p  48771
  Copyright terms: Public domain W3C validator