![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expmuld | Structured version Visualization version GIF version |
Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
expaddd.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Ref | Expression |
---|---|
expmuld | ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | expaddd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
3 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
4 | expmul 13328 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | |
5 | 1, 2, 3, 4 | syl3anc 1364 | 1 ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 (class class class)co 7023 ℂcc 10388 · cmul 10395 ℕ0cn0 11751 ↑cexp 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-seq 13224 df-exp 13284 |
This theorem is referenced by: oexpneg 15531 odzdvds 15965 prmreclem6 16090 aaliou3lem8 24621 cxpeq 25023 cubic2 25111 dquart 25116 basellem3 25346 chtublem 25473 mersenne 25489 lgslem1 25559 lgsqrlem2 25609 lgseisenlem4 25640 chebbnd1lem3 25733 dchrisum0flblem1 25770 dchrisum0flblem2 25771 dffltz 38789 jm2.22 39098 stoweidlem1 41850 stirlinglem3 41925 stirlinglem10 41932 etransclem23 42106 sqrtpwpw2p 43204 fmtnorec2lem 43208 fmtnorec4 43215 2pwp1prm 43255 sfprmdvdsmersenne 43272 lighneallem2 43275 proththd 43283 oexpnegALTV 43346 |
Copyright terms: Public domain | W3C validator |