MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmuld Structured version   Visualization version   GIF version

Theorem expmuld 14048
Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
expcld.2 (𝜑𝑁 ∈ ℕ0)
expaddd.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
expmuld (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmuld
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 expaddd.2 . 2 (𝜑𝑀 ∈ ℕ0)
3 expcld.2 . 2 (𝜑𝑁 ∈ ℕ0)
4 expmul 14006 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  (class class class)co 7341  cc 10996   · cmul 11003  0cn0 12373  cexp 13960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-seq 13901  df-exp 13961
This theorem is referenced by:  oexpneg  16248  odzdvds  16699  prmreclem6  16825  aaliou3lem8  26273  cxpeq  26687  cubic2  26778  dquart  26783  basellem3  27013  chtublem  27142  mersenne  27158  lgslem1  27228  lgsqrlem2  27278  lgseisenlem4  27309  chebbnd1lem3  27402  dchrisum0flblem1  27439  dchrisum0flblem2  27440  expevenpos  32819  aks4d1p1p2  42082  dffltz  42646  flt4lem  42657  3cubeslem3l  42698  3cubeslem3r  42699  jm2.22  43007  stoweidlem1  46018  stirlinglem3  46093  stirlinglem10  46100  etransclem23  46274  sqrtpwpw2p  47548  fmtnorec2lem  47552  fmtnorec4  47559  2pwp1prm  47599  sfprmdvdsmersenne  47613  lighneallem2  47616  proththd  47624  oexpnegALTV  47687
  Copyright terms: Public domain W3C validator