Proof of Theorem oexpled
| Step | Hyp | Ref
| Expression |
| 1 | | 0red 11231 |
. 2
⊢ (𝜑 → 0 ∈
ℝ) |
| 2 | | oexpled.2 |
. 2
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | 0red 11231 |
. . 3
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → 0 ∈ ℝ) |
| 4 | | oexpled.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → 𝐴 ∈ ℝ) |
| 6 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 7 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | | oexpled.3 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 8 | nnnn0d 12555 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → 𝑁 ∈
ℕ0) |
| 11 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) |
| 12 | | oexpled.5 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → 𝐴 ≤ 𝐵) |
| 14 | 6, 7, 10, 11, 13 | leexp1ad 14184 |
. . . 4
⊢ ((𝜑 ∧ 0 ≤ 𝐴) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 15 | 14 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 0 ≤ 𝐴) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 16 | 4 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ) |
| 17 | 9 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 𝑁 ∈
ℕ0) |
| 18 | 16, 17 | reexpcld 14171 |
. . . 4
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑𝑁) ∈ ℝ) |
| 19 | | 0red 11231 |
. . . 4
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 0 ∈
ℝ) |
| 20 | 2 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 𝐵 ∈ ℝ) |
| 21 | 20, 17 | reexpcld 14171 |
. . . 4
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐵↑𝑁) ∈ ℝ) |
| 22 | 8 | nncnd 12249 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 23 | | 1cnd 11223 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 24 | 22, 23 | npcand 11591 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 25 | 24 | oveq2d 7416 |
. . . . . . 7
⊢ (𝜑 → (𝐴↑((𝑁 − 1) + 1)) = (𝐴↑𝑁)) |
| 26 | 4 | recnd 11256 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 27 | | nnm1nn0 12535 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 28 | 8, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
| 29 | 26, 28 | expp1d 14155 |
. . . . . . 7
⊢ (𝜑 → (𝐴↑((𝑁 − 1) + 1)) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
| 30 | 25, 29 | eqtr3d 2771 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
| 31 | 30 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) |
| 32 | 4, 28 | reexpcld 14171 |
. . . . . . . 8
⊢ (𝜑 → (𝐴↑(𝑁 − 1)) ∈
ℝ) |
| 33 | 32 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑(𝑁 − 1)) ∈
ℝ) |
| 34 | 8 | nnzd 12608 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 35 | | oexpled.4 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
| 36 | | oddm1even 16349 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (¬ 2
∥ 𝑁 ↔ 2 ∥
(𝑁 −
1))) |
| 37 | 36 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) → 2 ∥
(𝑁 −
1)) |
| 38 | 34, 35, 37 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∥ (𝑁 − 1)) |
| 39 | 4, 28, 38 | expevenpos 32762 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (𝐴↑(𝑁 − 1))) |
| 40 | 39 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 0 ≤ (𝐴↑(𝑁 − 1))) |
| 41 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) |
| 42 | 16, 19, 33, 40, 41 | lemul2ad 12175 |
. . . . . 6
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → ((𝐴↑(𝑁 − 1)) · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 0)) |
| 43 | 33 | recnd 11256 |
. . . . . . 7
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑(𝑁 − 1)) ∈
ℂ) |
| 44 | 43 | mul01d 11427 |
. . . . . 6
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → ((𝐴↑(𝑁 − 1)) · 0) =
0) |
| 45 | 42, 44 | breqtrd 5143 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → ((𝐴↑(𝑁 − 1)) · 𝐴) ≤ 0) |
| 46 | 31, 45 | eqbrtrd 5139 |
. . . 4
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑𝑁) ≤ 0) |
| 47 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 0 ≤ 𝐵) |
| 48 | 20, 17, 47 | expge0d 14172 |
. . . 4
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → 0 ≤ (𝐵↑𝑁)) |
| 49 | 18, 19, 21, 46, 48 | letrd 11385 |
. . 3
⊢ (((𝜑 ∧ 0 ≤ 𝐵) ∧ 𝐴 ≤ 0) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 50 | 3, 5, 15, 49 | lecasei 11334 |
. 2
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 51 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝐴 ∈ ℝ) |
| 52 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝑁 ∈
ℕ0) |
| 53 | 51, 52 | reexpcld 14171 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝐴↑𝑁) ∈ ℝ) |
| 54 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝐵 ∈ ℝ) |
| 55 | 54, 52 | reexpcld 14171 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝐵↑𝑁) ∈ ℝ) |
| 56 | 2 | renegcld 11657 |
. . . . . 6
⊢ (𝜑 → -𝐵 ∈ ℝ) |
| 57 | 56 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ) |
| 58 | 4 | renegcld 11657 |
. . . . . 6
⊢ (𝜑 → -𝐴 ∈ ℝ) |
| 59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐴 ∈ ℝ) |
| 60 | 2 | le0neg1d 11801 |
. . . . . 6
⊢ (𝜑 → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵)) |
| 61 | 60 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵) |
| 62 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝐴 ≤ 𝐵) |
| 63 | | leneg 11733 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| 64 | 63 | biimpa 476 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → -𝐵 ≤ -𝐴) |
| 65 | 51, 54, 62, 64 | syl21anc 837 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐵 ≤ -𝐴) |
| 66 | 57, 59, 52, 61, 65 | leexp1ad 14184 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (-𝐵↑𝑁) ≤ (-𝐴↑𝑁)) |
| 67 | 2 | recnd 11256 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 68 | | oexpneg 16351 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → (-𝐵↑𝑁) = -(𝐵↑𝑁)) |
| 69 | 67, 8, 35, 68 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → (-𝐵↑𝑁) = -(𝐵↑𝑁)) |
| 70 | 69 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (-𝐵↑𝑁) = -(𝐵↑𝑁)) |
| 71 | | oexpneg 16351 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 72 | 26, 8, 35, 71 | syl3anc 1372 |
. . . . 5
⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 73 | 72 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 74 | 66, 70, 73 | 3brtr3d 5148 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -(𝐵↑𝑁) ≤ -(𝐴↑𝑁)) |
| 75 | | leneg 11733 |
. . . 4
⊢ (((𝐴↑𝑁) ∈ ℝ ∧ (𝐵↑𝑁) ∈ ℝ) → ((𝐴↑𝑁) ≤ (𝐵↑𝑁) ↔ -(𝐵↑𝑁) ≤ -(𝐴↑𝑁))) |
| 76 | 75 | biimpar 477 |
. . 3
⊢ ((((𝐴↑𝑁) ∈ ℝ ∧ (𝐵↑𝑁) ∈ ℝ) ∧ -(𝐵↑𝑁) ≤ -(𝐴↑𝑁)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 77 | 53, 55, 74, 76 | syl21anc 837 |
. 2
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |
| 78 | 1, 2, 50, 77 | lecasei 11334 |
1
⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) |